Skip to main content

Relearning Ensemble Selection Based on New Generated Features

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13758))

Included in the following conference series:

  • 833 Accesses

Abstract

The ensemble methods are meta-algorithms that combine several base machine learning techniques to increase the effectiveness of the classification. Many existing committees of classifiers use the classifier selection process to determine the optimal set of base classifiers. In this article, we propose the classifiers selection framework with relearning base classifiers. Additionally, we use in the proposed framework the newly generated features, which can be obtained after the relearning process. The proposed technique was compared with state-of-the-art ensemble methods using three benchmark datasets and one synthetic dataset. Four classification performance measures are used to evaluate the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzubi, O.A., Alzubi, J.A., Alweshah, M., Qiqieh, I., Al-Shami, S., Ramachandran, M.: An optimal pruning algorithm of classifier ensembles: dynamic programming approach. Neural Comput. Appl. 32(20), 16091–16107 (2020). https://doi.org/10.1007/s00521-020-04761-6

    Article  Google Scholar 

  2. Bian, Y., Wang, Y., Yao, Y., Chen, H.: Ensemble pruning based on objection maximization with a general distributed framework. IEEE Trans. Neural Netw. Learn. Syst. 31(9), 3766–3774 (2019)

    Article  Google Scholar 

  3. Brun, A.L., Britto Jr., A.S., Oliveira, L.S., Enembreck, F., Sabourin, R.: A framework for dynamic classifier selection oriented by the classification problem difficulty. Pattern Recogn. 76, 175–190 (2018)

    Google Scholar 

  4. Cruz, R.M., Oliveira, D.V., Cavalcanti, G.D., Sabourin, R.: FIRE-DES++: enhanced online pruning of base classifiers for dynamic ensemble selection. Pattern Recogn. 85, 149–160 (2019)

    Article  Google Scholar 

  5. Cruz, R.M., Sabourin, R., Cavalcanti, G.D.: Dynamic classifier selection: recent advances and perspectives. Inf. Fusion 41, 195–216 (2018)

    Article  Google Scholar 

  6. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  7. Junior, L.M., Nardini, F.M., Renso, C., Trani, R., Macedo, J.A.: A novel approach to define the local region of dynamic selection techniques in imbalanced credit scoring problems. Expert Syst. Appl. 152, 113351 (2020)

    Article  Google Scholar 

  8. Nguyen, T.T., Luong, A.V., Dang, M.T., Liew, A.W.C., McCall, J.: Ensemble selection based on classifier prediction confidence. Pattern Recogn. 100, 107104 (2020)

    Article  Google Scholar 

  9. Oliveira, D.V., Cavalcanti, G.D., Sabourin, R.: Online pruning of base classifiers for dynamic ensemble selection. Pattern Recogn. 72, 44–58 (2017)

    Article  Google Scholar 

  10. Piwowarczyk, M., Muke, P.Z., Telec, Z., Tworek, M., Trawiński, B.: Comparative analysis of ensembles created using diversity measures of regressors. In: 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2207–2214. IEEE (2020)

    Google Scholar 

  11. Roy, A., Cruz, R.M., Sabourin, R., Cavalcanti, G.D.: A study on combining dynamic selection and data preprocessing for imbalance learning. Neurocomputing 286, 179–192 (2018)

    Article  Google Scholar 

  12. Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(4), e1249 (2018)

    Article  Google Scholar 

  13. Scholkopf, B., Smola, A.J.: Learning with kernels: support vector machines, regularization, optimization, and beyond. In: Adaptive Computation and Machine Learning Series (2018)

    Google Scholar 

  14. Woźniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014)

    Article  Google Scholar 

  15. Zhang, C., Ma, Y.: Ensemble Machine Learning: Methods and Applications. Springer, NY (2012). https://doi.org/10.1007/978-1-4419-9326-7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Burduk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burduk, R. (2022). Relearning Ensemble Selection Based on New Generated Features. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., TrawiĹ„ski, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-21967-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-21966-5

  • Online ISBN: 978-3-031-21967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics