Abstract
Super-resolution reconstruction is a common term for a variety of techniques aimed at enhancing spatial resolution either from a single image or from multiple images presenting the same scene. While single-image super-resolution has been intensively explored with many advancements proposed attributed to the use of deep learning, multi-image reconstruction remains a much less explored field. The first solutions based on convolutional neural networks were proposed recently for super-resolving multiple Proba-V satellite images, but they have not been validated for enhancing natural images so far. Also, their sensitiveness to the characteristics of the input data, including their mutual similarity and image acquisition conditions, has not been explored in depth. In this paper, we address this research gap to better understand how to select and prepare the input data for reconstruction. We expect that the reported conclusions will help in elaborating more efficient super-resolution frameworks that could be deployed in practical applications.
This research was supported by the National Science Centre, Poland, under Research Grant 2019/35/B/ST6/03006 (MK) and co-financed by the Silesian University of Technology grant for maintaining and developing research potential (JK).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The RAMS implementation is available at https://github.com/EscVM/RAMS.
References
Alvarez-Ramos, V., Ponomaryov, V., Reyes-Reyes, R.: Image super-resolution via two coupled dictionaries and sparse representation. Multimed. Tools Appl. 77(11), 13487–13511 (2018). https://doi.org/10.1007/s11042-017-4968-3
Balestriero, R., Glotin, H., Baraniuk, R.G.: Interpretable Super-Resolution via a Learned Time-Series Representation (2020). arxiv.org/abs/2006.07713
Benecki, P., Kawulok, M., Kostrzewa, D., Skonieczny, L.: Evaluating super-resolution reconstruction of satellite images. Acta Astronaut. 153, 15–25 (2018)
Bhat, G., Danelljan, M., Timofte, R.: NTIRE 2021 challenge on burst super-resolution: methods and results. In: Proceedings IEEE/CVF CVPR Workshops, pp. 613–626 (2021)
Bhat, G., Danelljan, M., Van Gool, L., Timofte, R.: Deep burst super-resolution. In: Proceedings IEEE/CVF CVPR, pp. 9209–9218 (2021)
Bordone Molini, A., Valsesia, D., Fracastoro, G., Magli, E.: DeepSUM: deep neural network for super-resolution of unregistered multitemporal images. IEEE TGRS 58(5), 3644–3656 (2020)
Chen, H., et al.: Real-world single image super-resolution: a brief review. Inf. Fusion 79, 124–145 (2021)
Deudon, M., et al.: HighRes-net: Recursive fusion for multi-frame super-resolution of satellite imagery (2020). arxiv.org/abs/2002.06460
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multiframe super resolution. IEEE TIP 13(10), 1327–1344 (2004)
Huang, Y., Li, J., Gao, X., Hu, Y., Lu, W.: Interpretable detail-fidelity attention network for single image super-resolution. IEEE TIP 30, 2325–2339 (2021)
Hui, Z., Wang, X., Gao, X.: Fast and accurate single image super-resolution via information distillation network. In: Proceedings IEEE/CVF CVPR, pp. 723–731 (2018)
Jo, Y., Kim, S.J.: Practical single-image super-resolution using look-up table. In: Proceedings IEEE/CVF CVPR, pp. 691–700 (2021)
Kappeler, A., Yoo, S., Dai, Q., Katsaggelos, A.K.: Video super-resolution with convolutional neural networks. IEEE TCI 2(2), 109–122 (2016)
Kawulok, M., Benecki, P., Kostrzewa, D., Skonieczny, L.: Evolving imaging model for super-resolution reconstruction. In: Proceedings GECOO, pp. 284–285 (2018)
Kawulok, M., Benecki, P., Nalepa, J., Kostrzewa, D., Skonieczny, Ł: Towards Robust Evaluation of Super-Resolution Satellite Image Reconstruction. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10751, pp. 476–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75417-8_45
Kawulok, M., Benecki, P., Piechaczek, S., Hrynczenko, K., Kostrzewa, D., Nalepa, J.: Deep learning for multiple-image super-resolution. IEEE GRSL 17(6), 1062–1066 (2020)
Kawulok, M., Tarasiewicz, T., Nalepa, J., Tyrna, D., Kostrzewa, D.: Deep learning for multiple-image super-resolution of sentinel-2 data. In: Proceedings IEEE IGARSS, pp. 3885–3888 (2021)
Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings IEEE CVPR, pp. 1646–1654 (2016)
Köhler, T., Bätz, M., Naderi, F., Kaup, A., Maier, A., Riess, C.: Toward bridging the simulated-to-real gap: benchmarking super-resolution on real data. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2944–2959 (2020)
Kostrzewa, D., Skonieczny, Ł, Benecki, P., Kawulok, M.: B4MultiSR: a benchmark for multiple-image super-resolution reconstruction. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2018. CCIS, vol. 928, pp. 361–375. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99987-6_28
Lai, W., Huang, J., Ahuja, N., Yang, M.: Fast and accurate image super-resolution with deep Laplacian pyramid networks. IEEE TPAMI 41(11), 2599–2613 (2019)
Ledig, C., Theis, L., Huszár, F., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings IEEE CVPR, pp. 105–114 (2017)
Liu, D., Wang, Z., Wen, B., et al.: Robust single image super-resolution via deep networks with sparse prior. IEEE TIP 25(7), 3194–3207 (2016)
Märtens, M., Izzo, D., Krzic, A., Cox, D.: Super-resolution of PROBA-V images using convolutional neural networks. Astrodynamics 3(4), 387–402 (2019)
Nasrollahi, K., Moeslund, T.B.: Super-resolution: a comprehensive survey. Mach. Vision Appl. 25(6), 1423–1468 (2014). https://doi.org/10.1007/s00138-014-0623-4
Nguyen, N.L., Anger, J., Davy, A., Arias, P., Facciolo, G.: Self-supervised multi-image super-resolution for push-frame satellite images. In: Proceedings IEEE/CVF CVPR, pp. 1121–1131 (2021)
Rifat Arefin, M., et al.: Multi-image super-resolution for remote sensing using deep recurrent networks. In: Proceedings IEEE CVPR Workshops, pp. 206–207 (2020)
Salvetti, F., Mazzia, V., Khaliq, A., Chiaberge, M.: Multi-image super resolution of remotely sensed images using residual attention deep neural networks. Remote Sens. 12(14), 2207 (2020)
Tao, Y., Muller, J.P.: Super-resolution restoration of spaceborne ultra-high-resolution images using the UCL OpTiGAN system. Remote Sens. 13(12), 2269 (2021)
Tarasiewicz, T., Nalepa, J., Kawulok, M.: A graph neural network for multiple-image super-resolution. In: Proceedings IEEE ICIP, pp. 1824–1828 (2021)
Valsesia, D., Magli, E.: Permutation invariance and uncertainty in multitemporal image super-resolution. IEEE TGRS 60, 1–12 (2021)
Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings ECCV workshops (2018)
Wang, Z., Chen, J., Hoi, S.C.H.: Deep learning for image super-resolution: a survey. IEEE TPAMI 43(10), 3365–3387 (2021)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. In: IEEE TIP, pp. 600–612 (2004)
Wei, P., et al.: Component divide-and-conquer for real-world image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 101–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_7
Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J., Liao, Q.: Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimed. 21(12), 3106–3121 (2019)
Yang, W., Feng, J., Xie, G., Liu, J., Guo, Z., Yan, S.: Video super-resolution based on spatial-temporal recurrent residual networks. Comput. Vis. Image Underst. 168, 79–92 (2018)
Yue, L., Shen, H., Li, J., Yuan, Q., Zhang, H., Zhang, L.: Image super-resolution: the techniques, applications, and future. Signal Process. 128, 389–408 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Adler, J., Kawulok, J., Kawulok, M. (2022). Toward Understanding the Impact of Input Data for Multi-Image Super-Resolution. In: Nguyen, N.T., Tran, T.K., Tukayev, U., Hong, TP., Trawiński, B., Szczerbicki, E. (eds) Intelligent Information and Database Systems. ACIIDS 2022. Lecture Notes in Computer Science(), vol 13758. Springer, Cham. https://doi.org/10.1007/978-3-031-21967-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-21967-2_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-21966-5
Online ISBN: 978-3-031-21967-2
eBook Packages: Computer ScienceComputer Science (R0)