Abstract
Intima-media thickness (IMT) of the common carotid artery is routinely measured in ultrasound images and its increase is a marker of pathology. Manual measurement being subject to substantial inter- and intra-observer variability, automated methods have been proposed to find the contours of the intima-media complex (IMC) and to deduce the IMT thereof. Most of them assume that these contours are smooth curves passing through points with strong intensity gradients expected between artery lumen and intima, and between media and adventitia layers. These assumptions may not hold depending on image quality and arterial wall morphology. We therefore relaxed them and developed a region-based segmentation method that learns the appearance of the IMC from data annotated by human experts. This deep-learning method uses the dilated U-net architecture and proceeds as follows. First, the shape and location of the arterial wall are identified in full-image-height patches using the original image resolution. Then, the actual segmentation of the IMC is performed at a finer spatial resolution, in patches distributed around the location thus identified. Eventually, the predictions from these patches are combined by majority voting and the contours of the segmented region are extracted. On a public database of 2676 images the accuracy and robustness of the proposed method outperformed state-of-the-art algorithms. The first step was successful in \(98.7\%\) of images, and the overall mean absolute error of the estimated IMT was of \(100\pm 89\,\mu \)m.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Biswas, M., Saba, L., Omerzu, T., Johri, A.M., Khanna, N.N., Viskovic, K., Mavrogeni, S., Laird, J.R., Pareek, G., Miner, M., Balestrieri, A., Sfikakis, P.P., Protogerou, A., Misra, D.P., Agarwal, V., Kitas, G.D., Kolluri, R., Sharma, A., Viswanathan, V., Ruzsa, Z., Nicolaides, A., Suri, J.S.: A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: Artificial intelligence framework. J. Digit. Imaging 34(3), 581–604 (2021)
Loizou, C.P.: A review of ultrasound common carotid artery image and video segmentation techniques. Med. Biol. Eng. Comput. 52(12), 1073–1093 (2014)
Meiburger, K.M., Acharya, U.R., Molinari, F.: Automated localization and segmentation techniques for B-mode ultrasound images: A review. Comput. Biol. Med. 92, 210–235 (2018)
Meiburger, K.M., Marzola, F., Zahnd, G., Faita, F., Loizou, C., Lainé, N., Carvalho, C., Steinman, D., Gibello, L., Bruno, R.M., Clarenbach, R., Francesconi, M., Nikolaides, A., Liebgott, H., Campilho, A., Ghotbi, R., Kyriacou, E., Navab, N., Griffin, M., Panayiotou, A., Gherardini, R., Varetto, G., Bianchini, E., Pattichis, C., Ghiadoni, L., Rouco, J., Orkisz, M., Molinari, F.: Carotid ultrasound boundary study (CUBS): Technical considerations on an open multi-center analysis of computerized measurement systems for intima-media thickness measurement on common carotid artery longitudinal B-mode ultrasound scans. Comput. Biol. Med. 144, 105333 (2022)
Meiburger, K.M., Marzola, F., Zahnd, G., Faita, F., Loizou, C., Lainé, N., Carvalho, C., Steinman, D., Gibello, L., Bruno, R.M., Clarenbach, R., Francesconi, M., Nikolaides, A., Liebgott, H., Campilho, A., Ghotbi, R., Kyriacou, E., Navab, N., Griffin, M., Panayiotou, A., Gherardini, R., Varetto, G., Bianchini, E., Pattichis, C., Ghiadoni, L., Rouco, J., Orkisz, M., Molinari, F.: DATASET for “Carotid Ultrasound Boundary Study (CUBS): Technical considerations on an open multi-center analysis of computerized measurement systems for intima-media thickness measurement on common carotid artery longitudinal B-mode ultrasound scans”. Mendeley Data, V1 (2022)
Meiburger, K.M., Zahnd, G., Faita, F., Loizou, C.P., Carvalho, C., Steinman, D.A., Gibello, L., Bruno, R.M., Marzola, F., Clarenbach, R., Francesconi, M., Nicolaides, A.N., Campilho, A., Ghotbi, R., Kyriacou, E., Navab, N., Griffin, M., Panayiotou, A.G., Gherardini, R., Varetto, G., Bianchini, E., Pattichis, C.S., Ghiadoni, L., Rouco, J., Molinari, F.: Carotid ultrasound boundary study (CUBS): An open multicenter analysis of computerized intima-media thickness measurement systems and their clinical impact. Ultrasound Med. Biol. 47(8), 2442–2455 (2021)
Meiburger, K.M., Zahnd, G., Faita, F., Loizou, C.P., Carvalho, C., Steinman, D.A., Gibello, L., Bruno, R.M., Marzola, F., Clarenbach, R., Francesconi, M., Nicolaides, A.N., Campilho, A., Ghotbi, R., Kyriacou, E., Navab, N., Griffin, M., Panayiotou, A.G., Gherardini, R., Varetto, G., Bianchini, E., Pattichis, C.S., Ghiadoni, L., Rouco, J., Molinari, F.: DATASET for “Carotid Ultrasound Boundary Study (CUBS): an open multi-center analysis of computerized intima-media thickness measurement systems and their clinical impact”. Mendeley Data, V1 (2021)
Menchón-Lara, R., Sancho-Gómez, J., Bueno-Crespo, A.: Early-stage atherosclerosis detection using deep learning over carotid ultrasound images. Appl. Soft Comput. 49, 616–628 (2016)
Meshram, N., Mitchell, C., Wilbrand, S., Dempsey, R., Varghese, T.: Deep learning for carotid plaque segmentation using a dilated U-net architecture. Ultrasonic Imaging 42(4–5), 221–230 (2020)
Molinari, F., Zeng, G., Suri, J.S.: A state of the art review on intima-media thickness (IMT) measurement and wall segmentation techniques for carotid ultrasound. Comput. Methods Programs Biomed. 100, 201–221 (2010)
Qian, C., Su, E., Yang, X.: Segmentation of the common carotid intima-media complex in ultrasound images using 2-D continuous max-flow and stacked sparse autoencoder. Ultrasound Med. Biol. 46(11), 3104–3124 (2020)
Ronneberger, O., Brox: U-net: Convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) International Conference on Medical Image Computing and Computer Assisted Intervention—MICCAI. vol. LNCS 9351, pp. 234–241. Springer, Cham (2015)
Wang, K., Pu, Y., Zhang, Y., Wang, P.: Fully automatic measurement of intima-media thickness in ultrasound images of the common carotid artery based on improved Otsu’s method and adaptive wind driven optimization. Ultrasonic Imaging 42(6), 245–60 (2020)
Zahnd, G., Kapellas, K., van Hattem, M., van Dijk, A., Sérusclat, A., Moulin, P., van der Lugt, A., Skilton, M., Orkisz, M.: A fully-automatic method to segment the carotid artery layers in ultrasound imaging: Application to quantify the compression-decompression pattern of the intima-media complex during the cardiac cycle. Ultrasound Med. Biol. 43(1), 239–257 (2017)
Zahnd, G., Orkisz, M., Sérusclat, A., Moulin, P., Vray, D.: Simultaneous extraction of carotid artery intima-media interfaces in ultrasound images: assessment of wall thickness temporal variation during the cardiac cycle. Int. J. Comput. Assist. Radiol. Surg. 9(4), 645–658 (2014)
Acknowledgments
The authors thank K. M. Meiburger and F. Marzola for their help in calculating the comparisons with reference annotations on CUBS1 and CUBS2 datasets. This work was partly supported, via NL’s doctoral grant, by the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lainé, N., Liebgott, H., Zahnd, G., Orkisz, M. (2023). Carotid Artery Wall Segmentation in Ultrasound Image Sequences Using a Deep Convolutional Neural Network. In: Chmielewski, L.J., Orłowski, A. (eds) Computer Vision and Graphics. ICCVG 2022. Lecture Notes in Networks and Systems, vol 598. Springer, Cham. https://doi.org/10.1007/978-3-031-22025-8_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-22025-8_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22024-1
Online ISBN: 978-3-031-22025-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)