Skip to main content

Optimal Delivery Area Assignment for the Capital Vehicle Routing Problem Based on a Maximum Likelihood Approach

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2022)

Abstract

In this study, we constructed an optimization model for the maximum likelihood estimation of delivery areas from a capacitated vehicle routing problem. The aim is to develop a method that combines the advantages of two methods of delivery planning: the efficiency of the routing software-based method and the flexibility of the area-in-charge method. We first conduct computer experiments to derive the optimal cycling plan for each stochastic demand pattern. We then solve the optimal delivery area assignment that is globally consistent with the data from these experiments. We focused on whether the optimal route for each demand pattern was contained in the same area and found the assigning area that maximized the probability. This model is designed for daily use because it is an easy-to-interpret area map, while the optimization of the circulation problem is solved using computers in advance. In experiments using the data, we confirmed that the model can provide correct area creation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Newell, F., Gordon, D., Carlos, F.: Design of multiple vehicle delivery tours-II other metrics. Transp. Res B-Meth 20(5), 365–376 (1986). https://doi.org/10.1016/0191-2615(86)90009-3

    Article  MATH  Google Scholar 

  2. Ouyang, Y.: Design of vehicle routing zones for large-scale distribution systems. Transp. Res B-Meth: Methodol. 41(10), 1079–1093 (2007). https://doi.org/10.1016/j.trb.2007.04.010

    Article  MATH  Google Scholar 

  3. Galvão, L.C., Novaes, A.G.N., Souza de Cursi, J.E., Souza, J.C.: A multiplicatively-weighted Voronoi diagram approach to logistics districting. Comput. Oper. Res. 33, 93–114 (2006). https://doi.org/10.1016/j.cor.2004.07.001

  4. García-Ayala, G., González-Velarde, J.L., Ríos-Mercado, R.Z., Fernández, E.: A novel model for arc territory design: promoting Eulerian districts. Int. Trans. Oper. Res. 23, 433–458 (2016). https://doi.org/10.1111/itor.12219

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhong, H., Hall, R.W., Dessouky, M.: Territory planning and vehicle dispatching with driver learning. Transp. Sci. 4(1), 74–89 (2007). https://doi.org/10.1287/trsc.1060.0167

    Article  Google Scholar 

  6. Sung, I., Nielsen, P.: Zoning a service area of unmanned aerial vehicles for package delivery services. J. Intell. Rob. Syst. 97(3–4), 719–731 (2019). https://doi.org/10.1007/s10846-019-01045-7

    Article  MATH  Google Scholar 

  7. Yudai, H., Atsushi, S.: New clustering method to estimate overlapped exchange area from regional flow matrix –characteristics of population migrations and freight flow. J. City Plan. Inst. Japan 55(3), 475–481 (2020). https://doi.org/10.11361/journalcpij.55.475

    Article  MATH  Google Scholar 

  8. Mikio, K., Pedroso, J.P., Masakazu, M., Rais, A.: Mathematical Optimization: Solving Problems Using Gurobi and Python, 2nd edn. Kindai Kagaku sha Co., Ltd., Japan (2013)

    MATH  Google Scholar 

  9. Densham, P.J., Rushton, G.: A more efficient heuristic for solving large p-median problems. J. RSAI 71(3), 307–329 (1992). https://doi.org/10.1007/BF01434270

    Article  MATH  Google Scholar 

  10. Capacitated Vehicle Routing (CVRP) package, LocalSolver. https://www.localsolver.com/docs/last/exampletour/vrp.html. Accessed 20 Jan 2022

  11. LocalSolver. https://www.localsolver.com/. Accessed 20 Jan 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudai Honma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maruyama, J., Honma, Y., Hasegawa, D., Toki, S., Shiono, N. (2022). Optimal Delivery Area Assignment for the Capital Vehicle Routing Problem Based on a Maximum Likelihood Approach. In: Dorronsoro, B., Pavone, M., Nakib, A., Talbi, EG. (eds) Optimization and Learning. OLA 2022. Communications in Computer and Information Science, vol 1684. Springer, Cham. https://doi.org/10.1007/978-3-031-22039-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22039-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22038-8

  • Online ISBN: 978-3-031-22039-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics