Skip to main content

Comparing Parallel Surrogate-Based and Surrogate-Free Multi-objective Optimization of COVID-19 Vaccines Allocation

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1684))

Included in the following conference series:

Abstract

The simulation-based and computationally expensive problem tackled in this paper addresses COVID-19 vaccines allocation in Malaysia. The multi-objective formulation considers simultaneously the total number of deaths, peak hospital occupancy and relaxation of mobility restrictions. Evolutionary algorithms have proven their capability to handle multi-to-many objectives but require a high number of computationally expensive simulations. The available techniques to raise the challenge rely on the joint use of surrogate-assisted optimization and parallel computing to deal with computational expensiveness. On the one hand, the simulation software is imitated by a cheap-to-evaluate surrogate model. On the other hand, multiple candidates are simultaneously assessed via multiple processing cores. In this study, we compare the performance of recently proposed surrogate-free and surrogate-based parallel multi-objective algorithms through the application to the COVID-19 vaccine distribution problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chang, S., et al.: Modelling transmission and control of the COVID-19 pandemic in australia. Nat. Commun. 11,5710, 03 (2020)

    Google Scholar 

  2. Trauer, J.M., et al.: Understanding how Victoria, Australia gained control of its second COVID-19 wave. Nat. Commun. 12(6266), 1–10 (2021)

    Google Scholar 

  3. Duque, D., Morton, D.P., Singh, B., Du, Z., Pasco, R., Meyers, L.A.: Timing social distancing to avert unmanageable COVID-19 hospital surges. Proc. Natl. Acad. Sci. 117(33), 19873–19878 (2020)

    Article  Google Scholar 

  4. Matrajt, L.: Optimizing vaccine allocation for COVID-19 vaccines: potential role of single-dose vaccination. Nat. Commun. 12(3449) (2021)

    Google Scholar 

  5. Matrajt, L., Longini, I.: Optimizing vaccine allocation at different points in time during an epidemic. PloS one, 5(11), e13767 2010

    Google Scholar 

  6. Matrajt, L., Eaton, J., Leung, T., Brown, E.R.: Vaccine optimization for COVID-19: who to vaccinate first? Sci. Adv. 7(6), eabf1374 (2021)

    Google Scholar 

  7. Buhat, C., et al.: Using constrained optimization for the allocation of COVID-19 vaccines in the Philippines. Appl. Health Econ. Health Policy 19(5), 699–708 (2021)

    Article  Google Scholar 

  8. Han, S., et al.: Time-varying optimization of COVID-19 vaccine prioritization in the context of limited vaccination capacity. Nat. Commun. 12(1), 4673 (2021)

    Article  Google Scholar 

  9. Anahideh, H., Kang, L., Nezami, N.: Fair and diverse allocation of scarce resources. Socio-Econ. Plann. Sci. 80, 101193 (2021)

    Article  Google Scholar 

  10. Bubar, K.M., et al.: Model-informed COVID-19 vaccine prioritization strategies by age and serostatus. Science 371(6532), 916–921 (2021)

    Article  Google Scholar 

  11. McBryde, E.S., et al.: Modelling direct and herd protection effects of vaccination against the SARS-CoV-2 delta variant in Australia. Med. J. Aust. 215(9), 427–432 (2021)

    Article  Google Scholar 

  12. Briffoteaux, G., et al.: Parallel surrogate-assisted optimization: batched Bayesian neural network-assisted GA versus q-ego. Swarm Evol. Comput. 57, 100717 (2020)

    Article  Google Scholar 

  13. Cicchese, J.M., Pienaar, E., Kirschner, D.E., Linderman, J.J.: Applying optimization algorithms to tuberculosis antibiotic treatment regimens. Cell. Mol. Bioeng. 10(6), 523–535 (2017)

    Article  Google Scholar 

  14. Miikkulainen, R., et al.: From prediction to prescription: evolutionary optimization of nonpharmaceutical interventions in the COVID-19 pandemic. IEEE Trans. Evol. Comput. 25(2), 386–401 (2021)

    Article  Google Scholar 

  15. Vilches, T.N., et al.: COVID-19 hospitalizations and deaths averted under an accelerated vaccination program in northeastern and southern regions of the USA. Lancet Reg. Health - Am. 6, 100147 (2022)

    Google Scholar 

  16. Sheel, M., McEwen, S., Davies, S.E.: Brand inequity in access to COVID-19 vaccines. Lancet Reg. Health - W. Pac. 18, 100366 (2022)

    Google Scholar 

  17. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Wiley Series on Parallel and Distributed Computing (2009)

    Book  MATH  Google Scholar 

  18. Michalewicz, Z., Dasgupta, D., Le Riche, R.G., Schoenauer, M.: Evolutionary algorithms for constrained engineering problems. Comput. Ind. Eng. 30(4), 851–870 (1996)

    Article  Google Scholar 

  19. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  20. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)

    Article  Google Scholar 

  21. Wang, X., Jin, Y., Schmitt, S., Olhofer, M.: An adaptive Bayesian approach to surrogate-assisted evolutionary multi-objective optimization. Inf. Sci. 519, 317–331 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ruan, X., Li, K., Derbel, B., Liefooghe, A.: Surrogate assisted evolutionary algorithm for medium scale multi-objective optimisation problems. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference. GECCO 2020, pp. 560–568, New York, NY, USA, Association for Computing Machinery (2020)

    Google Scholar 

  23. Bonilla, E.V., Chai, K., Williams, C.: Multi-task gaussian process prediction. In: Advances in Neural Information Processing Systems, vol. 20. Curran Associates Inc (2008)

    Google Scholar 

  24. Gardner, J.R., Pleiss, G., Bindel, D., Weinberger, K.Q., Wilson, A. G.: Gpytorch: blackbox matrix-matrix gaussian process inference with GPU acceleration. In: Advances in Neural Information Processing Systems (2018)

    Google Scholar 

  25. Xia, W., Yang, H., Liao, X., Zeng, J.: A multi-objective optimization method based on gaussian process simultaneous modeling for quality control in sheet metal forming. Int. J. Adv. Manufact. Technol. 72, 1333–1346 (2014)

    Article  Google Scholar 

  26. Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  27. Stein, M.L.: Interpolation of Spatial Data: Some Theory for Kriging. Springer, New York (1999)

    Book  MATH  Google Scholar 

  28. Wilson, A.G., Adams, R.P.: Gaussian process kernels for pattern discovery and extrapolation (2013)

    Google Scholar 

  29. Prem, K., Cook, A.R., Jit, M.: Projecting social contact matrices in 152 countries using contact surveys and demographic data. PLoS Comput. Biol. 13(9), 1–21 (2017)

    Article  Google Scholar 

  30. Weycker, D., et al.: Population-wide benefits of routine vaccination of children against influenza. Vaccine 23(10), 1284–1293 (2005)

    Article  Google Scholar 

  31. Medlock, J., Galvani, A.P.: Optimizing influenza vaccine distribution. Science 325(5948), 1705–1708 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Briffoteaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Briffoteaux, G., Ragonnet, R., Tomenko, P., Mezmaz, M., Melab, N., Tuyttens, D. (2022). Comparing Parallel Surrogate-Based and Surrogate-Free Multi-objective Optimization of COVID-19 Vaccines Allocation. In: Dorronsoro, B., Pavone, M., Nakib, A., Talbi, EG. (eds) Optimization and Learning. OLA 2022. Communications in Computer and Information Science, vol 1684. Springer, Cham. https://doi.org/10.1007/978-3-031-22039-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22039-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22038-8

  • Online ISBN: 978-3-031-22039-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics