Skip to main content

Maximum Information Coverage and Monitoring Path Planning with Unmanned Surface Vehicles Using Deep Reinforcement Learning

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1684))

Included in the following conference series:

  • 332 Accesses

Abstract

Manual monitoring large water reservoirs is a complex and high-cost task that requires many human resources. By using Autonomous Surface Vehicles, informative missions for modeling and supervising can be performed efficiently. Given a model of the uncertainty of the measurements, the minimization of entropy is proven to be a suitable criterion to find a surrogate model of the contamination map, also with complete coverage pathplanning. This work uses Proximal Policy Optimization, a Deep Reinforcement Learning algorithm, to find a suitable policy that solves this maximum information coverage path planning, whereas the obstacles are avoided. The results show that the proposed framework outperforms other methods in the literature by 32% in entropy minimization and by 63% in model accuracy.

S. Y. Luis—Participation financed by the Ministry of Universities under the FPU-2020 grant of Samuel Yanes Luis and by the Regional Govt. of Andalusia under PAIDI 2020 funds - P18-TP-1520.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://deap.readthedocs.io/en/master/code/benchmarks/shekel.py.

References

  1. United Nations Organization: United Nations Organization. Objective 6 (2021). https://www.un.org/sustainabledevelopment/es/water-and-sanitation/. Accessed 12 Nov 2021

  2. Velez, F.J., et al.: Wireless sensor and networking technologies for swarms of aquatic surface drones. In: 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), pp. 1–2 (2015). https://doi.org/10.1109/VTCFall.2015.7391193

  3. Ferreira, H., et al.: Autonomous bathymetry for risk assessment with ROAZ robotic surface vehicle. OCEANS 2009-EUROPE, pp. 1–6 (2009). https://doi.org/10.1109/OCEANSE.2009.5278235

  4. Peralt Samaniego, F., Gutierrez-Reina, D., Toral Marin, S.L., Arzamendia, M., Gregor, D.O.: A Bayesian optimization approach for water resources monitoring through an autonomous surface vehicle: the Ypacarai lake case study. IEEE Access 9, 9163–9179 (2021). https://doi.org/10.1109/ACCESS.2021.3050934

    Article  Google Scholar 

  5. Samaniego, F.P., Reina, D.G., Marin, S.L.T., Arzamendia, M., Gregor, D.O.: A Bayesian optimization approach for multi-function estimation for environmental monitoring using an autonomous surface vehicle: Ypacarai lake case study. Electron. (Switz.) 10(963), 9163–9179 (2021). https://doi.org/10.1109/ACCESS.2021.3050934

    Article  Google Scholar 

  6. Yanes Luis, S., Reina, D.G., Marin, S.L.T.: A deep reinforcement learning approach for the patrolling problem of water resources through autonomous surface vehicles: the Ypacarai lake case. IEEE Access 8, 204076–204093 (2020). https://doi.org/10.1109/access.2020.3036938

    Article  Google Scholar 

  7. Yanes Luis, S., Reina, D.G., Marin, S.L.T.: A multiagent deep reinforcement learning approach for path planning in autonomous surface vehicles: the Ypacaraí lake patrolling case. IEEE Access 9, 17084–17099 (2021). https://doi.org/10.1109/access.2021.3053348

    Article  Google Scholar 

  8. Arzamendia, M., Gregor, D., Reina, D.G., Toral, S.L.: An evolutionary approach to constrained path planning of an autonomous surface vehicle for maximizing the covered area of Ypacarai lake. Soft Comput. 23(5), 1723–1734 (2019). https://doi.org/10.1007/s00500-017-2895-x

    Article  Google Scholar 

  9. Arzamendia, M., Gutierrez, D., Toral, S., et al.: Intelligent online learning strategy for an autonomous surface vehicle in lake environments using evolutionary computation. IEEE Intell. Transp. Syst. Mag. 11(4), 110–125 (2019). https://doi.org/10.1109/MITS.2019.2939109

    Article  Google Scholar 

  10. Rückin, J., Jin, L., Popović, M.: Adaptive informative path planning using deep reinforcement learning for UAV-based active sensing, pp. 1–7 (2021). https://arxiv.org/abs/2109.13570

  11. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning, pp. 202–210. The MIT Press (2006). ISBN026218253X

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Yanes Luis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Luis, S.Y., Reina, D.G., Toral, S. (2022). Maximum Information Coverage and Monitoring Path Planning with Unmanned Surface Vehicles Using Deep Reinforcement Learning. In: Dorronsoro, B., Pavone, M., Nakib, A., Talbi, EG. (eds) Optimization and Learning. OLA 2022. Communications in Computer and Information Science, vol 1684. Springer, Cham. https://doi.org/10.1007/978-3-031-22039-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22039-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22038-8

  • Online ISBN: 978-3-031-22039-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics