Abstract
Most of the software of modern computer systems come with many configurable parameters that control the system’s behavior and its interaction with the underlying hardware.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atos boosts HPC application efficiency with its new flash accelerator solution. https://atos.net/en/2019/product-news_2019_02_07/atos-boosts-hpc-application-efficiency-new-flash-accelerator-solution
Documentation of the SHAMan application. https://shaman-app.readthedocs.io/
IO-SEA. https://iosea-project.eu
MPICH: a high performance and widely portable implementation of the Message Passing Interface (MPI) standard. https://www.mpich.org/
Open MPI: Open Source High Performance Computing. https://www.open-mpi.org/
OSU micro-benchmarks. https://mvapich.cse.ohio-state.edu/benchmarks/
Scikit-optimize. https://github.com/scikit-optimize/
The SHAMan application. https://github.com/bds-ailab/shaman
Tools to improve your efficiency. https://atos.net/wp-content/uploads/2018/07/CT_J1103_180616_RY_F_TOOLSTOIMPR_WEB.pdf
Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631 (2019)
The GPyOpt authors. GPyOpt: a Bayesian optimization framework in python (2016). https://github.com/SheffieldML/GPyOpt
Balaprakash, P., et al.: Autotuning in high-performance computing applications. Proc. IEEE 106(11), 2068–2083 (2018)
Chaarawi, M., Squyres, J.M., Gabriel, E., Feki, S.: A tool for optimizing runtime parameters of open MPI. In: Lastovetsky, A., Kechadi, T., Dongarra, J. (eds.) EuroPVM/MPI 2008. LNCS, vol. 5205, pp. 210–217. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87475-1_30
Chunduri, S., Parker, S., Balaji, P., Harms, K., Kumaran, K.: Characterization of MPI usage on a production supercomputer. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2018, pp. 386–400 (2018)
Da Silva, M.D., Tavares, H.L.: Redis Essentials. Packt Publishing (2015)
Di Pietro, A., While, L., Barone, L.: Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions. In: Proceedings of the 2004 Congress on Evolutionary Computation, vol. 2, pp. 1254–1261 (2004)
Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments (Computer Science & Data Analysis). Chapman & Hall/CRC (2005)
Faraj, A., Yuan, X.: Automatic generation and tuning of MPI collective communication routines. In: Proceedings of the 19th Annual International Conference on Supercomputing, pp. 393–402 (2005)
Hertel, L., Collado, J., Sadowski, P., Ott, J., Baldi, P.: Sherpa: robust hyperparameter optimization for machine learning. In: SoftwareX, vol. 12 (2020)
Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple Linux utility for resource management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/10968987_3
Knijnenburg, P., Kisuki, T., O’Boyle, M.: Combined selection of tile sizes and unroll factors using iterative compilation. J. Supercomput. 24, 43–67 (2003)
Koch, P., Golovidov, O., Gardner, S., Wujek, B., Griffin, J., Xu, Y.: Autotune. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018)
Le, T.T., Fu, W., Moore, J.H.: Scaling tree-based automated machine learning to biomedical big data with a feature set selector. Bioinformatics 36, 250–256 (2020)
Menon, H., Bhatele, A., Gamblin, T.: Auto-tuning parameter choices in HPC applications using Bayesian optimization. In: 2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 831–840 (2020)
Merkel, D.: Docker: lightweight Linux containers for consistent development and deployment. Linux J. (239) (2014)
Miyazaki, T., Sato, I., Shimizu, N.: Bayesian optimization of HPC systems for energy efficiency. In: Yokota, R., Weiland, M., Keyes, D., Trinitis, C. (eds.) ISC High Performance 2018. LNCS, vol. 10876, pp. 44–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92040-5_3
Nishtala, R., Yelick, K.A.: Optimizing collective communication on multicores. In: Proceedings of the First USENIX Conference on Hot Topics in Parallelism (2009)
Pjesivac-Grbovic, J., Angskun, T., Bosilca, G., Fagg, G., Gabriel, E., Dongarra, J.: Performance analysis of MPI collective operations. Cluster Comput. 10, 127–143 (2005)
Robert, S., Zertal, S., Goret, G.: Auto-tuning of IO accelerators using black-box optimization. In: Proceedings of the International Conference on High Performance Computing & Simulation (HPCS) (2019)
Robert, S.: Auto-tuning of computer systems using block-box optimization: an application to the case of I/O accelerators. Ph.D. thesis, University of UPSaclay (2021)
Robert, S., Zertal, S., Couvee, P.: SHAMan: a flexible framework for auto-tuning HPC systems. In: Calzarossa, M.C., Gelenbe, E., Grochla, K., Lent, R., Czachórski, T. (eds.) MASCOTS 2020. LNCS, vol. 12527, pp. 147–158. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68110-4_10
Robert, S., Zertal, S., Vaumourin, G., Couvée, P.: A comparative study of black-box optimization heuristics for online tuning of high performance computing I/O accelerators. Concurrency and Computation: Practice and Experience (2021)
Seymour, K., You, H., Dongarra, J.: A comparison of search heuristics for empirical code optimization. In: 2008 IEEE International Conference on Cluster Computing, pp. 421–429 (2008)
Siegmund, F., Ng, A., Deb, K.: A comparative study of dynamic resampling strategies for guided evolutionary multi-objective optimization. In: 2013 IEEE Congress on Evolutionary Computation, pp. 1826–1835 (2013)
Subramoni, H., et al.: Design and evaluation of network topology-/speed- aware broadcast algorithms for infiniband clusters. In: Proceedings of the IEEE International Conference on Cluster Computing (ICCC), pp. 317–325 (2011)
Thakur, R., Rabenseifner, R., Gropp, W.: Optimization of collective communication operations in MPICH. Int. J. High Perform. Comput. Appl. 19, 49–66 (2005)
Tu, B., Zou, M., Zhan, J., Zhao, X., Fan, J.: Multi-core aware optimization for MPI collectives. In: Proceedings of the IEEE International Conference on Cluster Computing, ICCC, pp. 322–325 (2008)
Hamadi, Y., Ky, V.K., D’Ambrosio, C., Liberti, L.: Surrogate-based methods for black-box optimization. Int. Trans. Oper. Res. (24) (2016)
Vadhiyar, S.S., Fagg, G.E., Dongarra, J.: Automatically tuned collective communications. In: Proceedings of the 2000 ACM/IEEE Conference on Supercomputing, SC 2000 (2000)
Zheng, W., et al.: Auto-tuning MPI collective operations on large-scale parallel systems. In: IEEE 21st International Conference on High Performance Computing and Communications, pp. 670–677 (2019)
Zielinski, K., Peters, D., Laur, R.: Stopping criteria for single-objective optimization (2005)
Acknowledgments
This work has been partially funded by the IO-SEA project [4], funded by the European High-Performance Computing Joint Undertaking (JU) and by BMBF/DLR under grant agreement No 955811. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and France, the Czech Republic, Germany, Ireland, Sweden and the United Kingdom.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Robert, S., Zertal, S., Couvée, P. (2022). SHAMan: A Versatile Auto-tuning Framework for Costly and Noisy HPC Systems. In: Dorronsoro, B., Pavone, M., Nakib, A., Talbi, EG. (eds) Optimization and Learning. OLA 2022. Communications in Computer and Information Science, vol 1684. Springer, Cham. https://doi.org/10.1007/978-3-031-22039-5_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-22039-5_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22038-8
Online ISBN: 978-3-031-22039-5
eBook Packages: Computer ScienceComputer Science (R0)