Skip to main content

Molecular Robots with Chirality on Grids

  • Conference paper
  • First Online:
Algorithmics of Wireless Networks (ALGOSENSORS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13707))

Abstract

In the theoretical studies on distributed algorithms for swarm robotics, the complexity and capabilities of the robots are usually reduced to their minimum. Recently, the MOBLOT model has been introduced in order to deal with robots considered silent, anonymous, and oblivious but capable to aggregate into more complex structures, called molecules. We study the case where robots move along a regular square grid and we formally define the Molecular Pattern Formation (MPF) problem where a specific configuration of robots assembled into molecules must be reached. As general result, we provide a necessary condition for its solvability. Then, we actually show that dealing with molecules can resolve in some cases the symmetry breaking issue on grids where otherwise robots cannot. Finally, we introduce and resolve an interesting case study, where molecules are given by tetrominos (aka Tetris blocks).

The work has been supported in part by the Italian National Group for Scientific Computation (GNCS-INdAM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Specific conditions that must be verified in order to start a given task.

  2. 2.

    If the robot with minimum view is on a corner, it is assumed to reside on the clockwise side of \( mbr (R)\).

  3. 3.

    I.e., when the molecule’s projection on \(\ell \) is not obstructed by any other molecule.

References

  1. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: Arbitrary pattern formation on infinite regular tessellation graphs. In: Proceedings of the 22nd International Conference on Distributed Computing and Networking (ICDCN), pp. 56–65. ACM, New York, NY, USA (2021). https://doi.org/10.1145/3427796.3427833

  2. Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A.: MOBLOT: molecular oblivious robots. In: Dignum, F., Lomuscio, A., Endriss, U., Nowé, A. (eds.) AAMAS ’21: 20th International Conference on Autonomous Agents and Multiagent Systems, Virtual Event, United Kingdom, 3–7 May 2021, pp. 350–358. ACM (2021)

    Google Scholar 

  3. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous arbitrary pattern formation: the effects of a rigorous approach. Distrib. Comput. 32(2), 91–132 (2019). https://doi.org/10.1007/s00446-018-0325-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Cicerone, S., Di Stefano, G., Navarra, A.: Asynchronous robots on graphs: gathering. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing. LNCS, vol. 11340, pp. 184–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_8

    Chapter  MATH  Google Scholar 

  5. Cicerone, S., Di Stefano, G., Navarra, A.: Solving the pattern formation by mobile robots with chirality. IEEE Access 9, 88177–88204 (2021). https://doi.org/10.1109/ACCESS.2021.3089081

    Article  Google Scholar 

  6. Cicerone, S., Di Stefano, G., Navarra, A.: A structured methodology for designing distributed algorithms for mobile entities. Inf. Sci. 574, 111–132 (2021). https://doi.org/10.1016/j.ins.2021.05.043

    Article  MathSciNet  Google Scholar 

  7. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Distributed computing by mobile robots: gathering. SIAM J. Comput. 41(4), 829–879 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. D’Angelo, G., D’Emidio, M., Das, S., Navarra, A., Prencipe, G.: Asynchronous silent programmable matter achieves leader election and compaction. IEEE Access 8, 207619–207634 (2020)

    Article  Google Scholar 

  9. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering asynchronous and oblivious robots on basic graph topologies under the look-compute-move model. In: Alpern, S., Fokkink, R., Gąsieniec, L., Lindelauf, R., Subrahmanian, V. (eds.) Search Theory: A Game Theoretic Perspective, pp. 197–222. Springer, New York, NY (2013). https://doi.org/10.1007/978-1-4614-6825-7_13

  10. Daymude, J.J., et al.: On the runtime of universal coating for programmable matter. Nat. Comput. 17(1), 81–96 (2018). https://doi.org/10.1007/s11047-017-9658-6

    Article  MathSciNet  Google Scholar 

  11. Di Stefano, G., Navarra, A.: Optimal gathering of oblivious robots in anonymous graphs and its application on trees and rings. Distrib. Comput. 30(2), 75–86 (2017). https://doi.org/10.1007/s00446-016-0278-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Flocchini, P., Prencipe, G., Santoro, N.: Self-deployment of mobile sensors on a ring. Theor. Comput. Sci. 402(1), 67–80 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Flocchini, P., Prencipe, G., Santoro, N.: Moving and computing models: robots. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing. Lecture Notes in Computer Science, vol. 11340, pp. 3–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_1

    Chapter  Google Scholar 

  14. Golomb, S.W., Klarner, D.A.: Polyominoes. In: Handbook of Discrete and Computational Geometry, 2nd Ed., pp. 331–352. Chapman and Hall/CRC, London (2004). https://doi.org/10.1201/9781420035315.ch15

  15. Kim, Y., Katayama, Y., Wada, K.: Pairbot: a novel model for autonomous mobile robot systems consisting of paired robots (2020)

    Google Scholar 

  16. Prencipe, G.: Pattern formation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing. Lecture Notes in Computer Science, vol. 11340, pp. 37–62. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_3

    Chapter  Google Scholar 

  17. Romanishin, J.W., Gilpin, K., Claici, S., Rus, D.: 3D M-Blocks: self-reconfiguring robots capable of locomotion via pivoting in three dimensions. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 1925–1932 (2015)

    Google Scholar 

  18. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system for collective behaviors. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3293–3298. IEEE (2012). https://doi.org/10.1109/ICRA.2012.6224638

  19. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessia Di Fonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cicerone, S., Di Fonso, A., Di Stefano, G., Navarra, A. (2022). Molecular Robots with Chirality on Grids. In: Erlebach, T., Segal, M. (eds) Algorithmics of Wireless Networks. ALGOSENSORS 2022. Lecture Notes in Computer Science, vol 13707. Springer, Cham. https://doi.org/10.1007/978-3-031-22050-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22050-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22049-4

  • Online ISBN: 978-3-031-22050-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics