Skip to main content

Motion Segmentation Based on Pixel Distribution Learning on Unseen Videos

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2022)

Abstract

Motion segmentation plays an important role in many applications including autonomous driving, computer vision and robotics. Previous works mainly focus on segmenting objects from seen videos. In this paper, we present a novel approach based on pixel distribution learning for motion segmentation in unseen videos. In particular, optical flow is extracted from consecutive frames to describe motion information. We then randomly permute these modified motion features, which are used as input of a convolution neural network. The random permutation process forces the network to learn the pixels’ distributions rather than local pattern information. Consequently, the proposed approach has a favorable generalization capacity and can be applied for unseen videos. In contrast to previous approaches based on deep learning, the training videos and testing videos of our proposed approach are completely different. Experiments based on videos from the KITTI-MOD dataset demonstrates that the proposed approach achieves promising results and shows potential for better motion segmentation on unseen videos.

Z. Lu and Y. Chen—Equally contributed to this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bideau, P., Learned-Miller, E.: It’s moving! a probabilistic model for causal motion segmentation in moving camera videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 433–449. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_26

    Chapter  Google Scholar 

  2. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  3. Horn, B.K., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)

    Article  MATH  Google Scholar 

  4. Hui, T.W., Tang, X., Loy, C.C.: LiteFlowNet: a lightweight convolutional neural network for optical flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8981–8989 (2018)

    Google Scholar 

  5. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2462–2470 (2017)

    Google Scholar 

  6. Jiang, M., Crookes, D.: Video object motion segmentation for intelligent visual surveillance. In: International Machine Vision and Image Processing Conference (IMVIP 2007), pp. 202–202 (2007). https://doi.org/10.1109/IMVIP.2007.7

  7. Keuper, M., Tang, S., Andres, B., Brox, T., Schiele, B.: Motion segmentation & multiple object tracking by correlation co-clustering. IEEE Trans. Pattern Anal. Mach. Intell. 42(1), 140–153 (2018)

    Article  Google Scholar 

  8. Kottinger, J., Almagor, S., Lahijanian, M.: Maps-x: explainable multi-robot motion planning via segmentation. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 7994–8000. IEEE (2021)

    Google Scholar 

  9. Lin, J.F.S., Joukov, V., Kulić, D.: Classification-based segmentation for rehabilitation exercise monitoring. J. Rehabil. Assistive Technol. Eng. 5, 2055668318761523 (2018)

    Google Scholar 

  10. Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. Vancouver (1981)

    Google Scholar 

  11. Mohamed, E., et al.: Monocular instance motion segmentation for autonomous driving: KITTI instancemotseg dataset and multi-task baseline. In: 2021 IEEE Intelligent Vehicles Symposium (IV), pp. 114–121. IEEE (2021)

    Google Scholar 

  12. Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: 2011 International Conference on Computer Vision, pp. 1583–1590. IEEE (2011)

    Google Scholar 

  13. Perazzi, F., Pont-Tuset, J., McWilliams, B., Gool, L.V., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  14. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4161–4170 (2017)

    Google Scholar 

  15. Siam, M., Mahgoub, H., Zahran, M., Yogamani, S., Jagersand, M., El-Sallab, A.: ModNet: moving object detection network with motion and appearance for autonomous driving. arXiv preprint arXiv:1709.04821 (2017)

  16. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

    Google Scholar 

  17. Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24

    Chapter  Google Scholar 

  18. Vertens, J., Valada, A., Burgard, W.: SMSnet: semantic motion segmentation using deep convolutional neural networks. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 582–589. IEEE (2017)

    Google Scholar 

  19. Wong, K.Y., Spetsakis, M.E.: Tracking based motion segmentation under relaxed statistical assumptions. Comput. Vis. Image Underst. 101(1), 45–64 (2006)

    Article  Google Scholar 

  20. Wu, X., Ma, J., Sun, Y., Zhao, C., Basu, A.: Multi-scale deep pixel distribution learning for concrete crack detection. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6577–6583. IEEE (2021)

    Google Scholar 

  21. Zelkowitz, M.: Advances in Computers. Elsevier (2002)

    Google Scholar 

  22. Zhao, C., Basu, A.: Pixel distribution learning for vessel segmentation under multiple scales. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2717–2721. IEEE (2021)

    Google Scholar 

  23. Zhao, C., Cham, T.L., Ren, X., Cai, J., Zhu, H.: Background subtraction based on deep pixel distribution learning. In: 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2018)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers and the following colleagues for helpful comments and discussions: Anup Basu and Chuqing Fu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youwei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Z., Chen, Y., Zhao, C. (2022). Motion Segmentation Based on Pixel Distribution Learning on Unseen Videos. In: Berretti, S., Su, GM. (eds) Smart Multimedia. ICSM 2022. Lecture Notes in Computer Science, vol 13497. Springer, Cham. https://doi.org/10.1007/978-3-031-22061-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22061-6_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22060-9

  • Online ISBN: 978-3-031-22061-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics