Skip to main content

Unsupervised Face Frontalization GAN Driven by 3D Rotation and Symmetric Filling

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13497))

Included in the following conference series:

  • 501 Accesses

Abstract

Face frontalization has been partially solved by deep learning methods, such as Generative Adversarial Networks (GANs). However, due to the lack of paired training datasets, current generative models are limited to specific poses. Similarly, current unsupervised frameworks do not utilize properties of human faces, which burdens the neural network training. To improve and overcome current challenges, we design a novel self-supervised method that takes full advantage of human face modeling and facial properties. With our proposed method, single-view images collected in the wild can be utilized in training and testing. Also, the synthesized images are robust to input faces with large variations. We utilize the symmetric properties of human face to texture unseen parts in a human face model. Then, a GAN is used to fix undesired artifacts. Experiments show that our method outperforms many existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moore, K.L., Dalley, A.F., Agur, A.M.: Moore’s clinical anatomy (2010)

    Google Scholar 

  2. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  3. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  4. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database forstudying face recognition in unconstrained environments. In: Workshop on faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  5. Klare, B.F., et al.: Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus benchmark A. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1931–1939 (2015)

    Google Scholar 

  6. Nech, A., Kemelmacher-Shlizerman, I.: Level playing field for million scale face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7044–7053 (2017)

    Google Scholar 

  7. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  8. Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3D solution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 146–155 (2016)

    Google Scholar 

  9. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image vision comput. 28(5), 807–813 (2010)

    Article  Google Scholar 

  10. Tran, L., Yin, X., Liu, X.: Disentangled representation learning GAN for pose-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1415–1424 (2017)

    Google Scholar 

  11. Tran, L., Yin, X., Liu, X.: Representation learning by rotating your faces. IEEE Trans. Pattern Anal. Mach. Intell. 41(12), 3007–3021 (2018)

    Article  Google Scholar 

  12. Huang, R., Zhang, S., Li, T., He, R.: Beyond face rotation: global and local perception GAN for photorealistic and identity preserving frontal view synthesis. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2439–2448 (2017)

    Google Scholar 

  13. Hu, Y., Wu, X., Yu, B., He, R., Sun, Z.: Pose-guided photorealistic face rotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8398–8406 (2018)

    Google Scholar 

  14. Yin, X., Yu, X., Sohn, K., Liu, X., Chandraker, M.: Towards large-pose face frontalization in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3990–3999 (2017)

    Google Scholar 

  15. Hassner, T., Harel, S., Paz, E., Enbar, R.: Effective face frontalization in unconstrained images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern recognition, pp. 4295–4304 (2015)

    Google Scholar 

  16. Deng, J., Cheng, S., Xue, N., Zhou, Y., Zafeiriou, S.: UV-GAN: adversarial facial UV map completion for pose-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7093–7102 (2018)

    Google Scholar 

  17. Cao, J., Hu, Y., Zhang, H., He, R., Sun, Z.: Learning a high fidelity pose invariant model for high-resolution face frontalization. arXiv preprint arXiv:1806.08472 (2018)

  18. Zhou, H., Liu, J., Liu, Z., Liu, Y., Wang, X.: Rotate-and-render: unsupervised photorealistic face rotation from single-view images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5911–5920 (2020)

    Google Scholar 

  19. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999)

    Google Scholar 

  20. Li, S., Li, H., Cui, J., Zha, H.: Pose-aware face alignment based on CNN and 3DMM. In: BMVC, p. 106 (2019)

    Google Scholar 

  21. Ferrari, C., Lisanti, G., Berretti, S., Del Bimbo, A.: Effective 3D based frontalization for unconstrained face recognition. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 1047–1052. IEEE (2016)

    Google Scholar 

  22. Zhu, X., Lei, Z., Yan, J., Yi, D., Li, S.Z.: High-fidelity pose and expression normalization for face recognition in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 787–796 (2015)

    Google Scholar 

  23. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  24. Zhu, J.Y., et al.: Multimodal image-to-image translation by enforcing bi-cycle consistency. In: Advances in Neural Information Processing Systems, pp. 465–476 (2017)

    Google Scholar 

  25. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)

    Google Scholar 

  26. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  27. Guo, J., Zhu, X., Yang, Y., Yang, F., Lei, Z., Li, S.Z.: Towards fast, accurate and stable 3D dense face alignment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 152–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_10

    Chapter  Google Scholar 

  28. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)

    Google Scholar 

  29. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–3738 (2015)

    Google Scholar 

  30. Wu, X., He, R., Sun, Z., Tan, T.: A light CNN for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

    Article  Google Scholar 

  31. Yim, J., Jung, H., Yoo, B., Choi, C., Park, D., Kim, J.: Rotating your face using multi-task deep neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 676–684 (2015)

    Google Scholar 

  32. Ghodrati, A., Jia, X., Pedersoli, M., Tuytelaars, T.: Towards automatic image editing: learning to see another you. arXiv preprint arXiv:1511.08446 (2015)

  33. Luan, X., Geng, H., Liu, L., Li, W., Zhao, Y., Ren, M.: Geometry structure preserving based GAN for multi-pose face frontalization and recognition. IEEE Access 8, 104676–104687 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanfang Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, G., Basu, A. (2022). Unsupervised Face Frontalization GAN Driven by 3D Rotation and Symmetric Filling. In: Berretti, S., Su, GM. (eds) Smart Multimedia. ICSM 2022. Lecture Notes in Computer Science, vol 13497. Springer, Cham. https://doi.org/10.1007/978-3-031-22061-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22061-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22060-9

  • Online ISBN: 978-3-031-22061-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics