Skip to main content

Metric Learning on Complex Projective Spaces

  • Conference paper
  • First Online:
Smart Multimedia (ICSM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13497))

Included in the following conference series:

  • 481 Accesses

Abstract

Shape analysis of landmarks is a fundamental problem in computer vision and multimedia. We propose a family of metrics called Fubini-Study distances defined in the complex projective space based on the seminal work of Kendall [11] for metric learning to measure the similarity between shape representations which are modeled directly by the equivalence classes of the 2D landmark configurations. Experiments conducted on the face landmarks for facial expression recognition demonstrate the competitiveness of the proposed method with respect to state-of-the-art approaches. A comparison with the metric defined in the Euclidean space has also been explored, proving that the Fubini-Study metric is more effective and discriminative than the Euclidean metric in identifying facial deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daoudi, M., Hammal, Z., Kacem, A., Cohn, J.F.: Gram matrices formulation of body shape motion: an application for depression severity assessment. In: 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), pp. 258–263 (2019). https://doi.org/10.1109/ACIIW.2019.8925009

  2. Daoudi, M., Otberdout, N., Paiva, J.-C.Á.: Metric learning on the manifold of oriented ellipses: application to facial expression recognition. In: Del Bimbo, A., (eds.) ICPR 2021. LNCS, vol. 12666, pp. 196–206. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68780-9_18

  3. Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on pairwise proximity data. In: Kearns, M., Solla, S., Cohn, D. (eds.) Advances in Neural Information Processing Systems, vol. 11. MIT Press (1999)

    Google Scholar 

  4. Gudmundsson, S., Runarsson, T.P., Sigurdsson, S.: Support vector machines and dynamic time warping for time series. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2772–2776 (2008). https://doi.org/10.1109/IJCNN.2008.4634188

  5. Hu, J., Lu, J., Tan, Y.P.: Discriminative deep metric learning for face verification in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1875–1882 (2014)

    Google Scholar 

  6. Huang, Z., Wang, R., Shan, S., Chen, X.: Projection metric learning on grassmann manifold with application to video based face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 140–149 (2015)

    Google Scholar 

  7. Jain, S., Changbo Hu, Aggarwal, J.K.: Facial expression recognition with temporal modeling of shapes. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1642–1649. IEEE, Barcelona, Spain (2011). https://doi.org/10.1109/ICCVW.2011.6130446. https://ieeexplore.ieee.org/document/6130446/

  8. Jung, H., Lee, S., Yim, J., Park, S., Kim, J.: Joint fine-tuning in deep neural networks for facial expression recognition. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 2983–2991 (2015). https://doi.org/10.1109/ICCV.2015.341

  9. Kacem, A., Daoudi, M., Alvarez-Paiva, J.C.: Barycentric representation and metric learning for facial expression recognition. In: 2018 13th IEEE International Conference on Automatic Face Gesture Recognition (FG 2018), pp. 443–447 (2018). https://doi.org/10.1109/FG.2018.00071

  10. Kacem, A., Daoudi, M., Amor, B.B., Berretti, S., Alvarez-Paiva, J.C.: A novel geometric framework on gram matrix trajectories for human behavior understanding. arXiv:1807.00676 (2018)

  11. Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984). https://doi.org/10.1112/blms/16.2.81

    Article  MATH  Google Scholar 

  12. Liao, S., Hu, Y., Zhu, X., Li, S.Z.: Person re-identification by local maximal occurrence representation and metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2197–2206 (2015)

    Google Scholar 

  13. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kanade Dataset (CK+): a complete dataset for action unit and emotion-specified expression. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, pp. 94–101 (2010). https://doi.org/10.1109/CVPRW.2010.5543262

  14. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(86), 2579–2605 (2008)

    MATH  Google Scholar 

  15. Shao, L., Liu, L., Yu, M.: Kernelized multiview projection for robust action recognition. Int. J. Comput. Vision 118(2), 115–129 (2016). https://doi.org/10.1007/s11263-015-0861-6

    Article  Google Scholar 

  16. Szczapa, B., Daoudi, M., Berretti, S., Pala, P., Bimbo, A.D., Hammal, Z.: Automatic estimation of self-reported pain by interpretable representations of motion dynamics. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 2544–2550 (2021). https://doi.org/10.1109/ICPR48806.2021.9412292

  17. Taheri, S., Turaga, P., Chellappa, R.: Towards view-invariant expression analysis using analytic shape manifolds. In: Face and Gesture 2011, pp. 306–313. IEEE, Santa Barbara, CA, USA (Mar 2011). https://doi.org/10.1109/FG.2011.5771415

  18. Tanfous, A.B., Drira, H., Amor, B.B.: Sparse coding of shape trajectories for facial expression and action recognition. arXiv:1908.03231 (2019)

  19. Townsend, J., Koep, N., Weichwald, S.: Pymanopt: a python toolbox for optimization on manifolds using automatic differentiation. J. Mach. Learn. Res. 17(137), 1–5 (2016)

    MATH  Google Scholar 

  20. Wan, S., Aggarwal, J.: Spontaneous facial expression recognition: a robust metric learning approach. Pattern Recogn. 47(5), 1859–1868 (2014). https://doi.org/10.1016/j.patcog.2013.11.025

    Article  Google Scholar 

  21. Wang, Z., Wang, S., Ji, Q.: Capturing complex spatio-temporal relations among facial muscles for facial expression recognition. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3422–3429. IEEE, Portland, OR, USA (2013). https://doi.org/10.1109/CVPR.2013.439

  22. Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 10, 207–244 (2009)

    MATH  Google Scholar 

  23. Zhao, G., Huang, X., Taini, M., Li, S.Z., Pietikäinen, M.: Facial expression recognition from near-infrared videos. Image Vis. Comput. 29(9), 607–619 (2011). https://doi.org/10.1016/j.imavis.2011.07.002

    Article  Google Scholar 

Download references

Acknowledgements

The proposed work was supported by the French State, managed by the National Agency for Research (ANR) under the Investments for the future program with reference ANR-16-IDEX-0004 ULNE. And we thank Prof. J-C. Alvarez Paiva from University of Lille for fruitful discussions on the formulation of the distance between shapes in complex projective spaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, Y., Daoudi, M. (2022). Metric Learning on Complex Projective Spaces. In: Berretti, S., Su, GM. (eds) Smart Multimedia. ICSM 2022. Lecture Notes in Computer Science, vol 13497. Springer, Cham. https://doi.org/10.1007/978-3-031-22061-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22061-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22060-9

  • Online ISBN: 978-3-031-22061-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics