Skip to main content

An Overview on Reducing Social Networks’ Size

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13725))

Included in the following conference series:

  • 957 Accesses

Abstract

Social networks are important dissemination platforms that allow the interchange of ideas. Such networks are omnipresent in our everyday life due to the explosive use of smartphones. Consequently, modern social networks have reached a significant number of users, making their size huge. Thereby scaling over such large data remains a challenging task. Reducing social networks’ size is a key task in social network analysis to deal with this data complexity. Many approaches have been developed in this direction. This paper is dedicated to proposing a new taxonomy covering different state-of-the-art methods designed to cope with the explosive growth of social network data. The suggested solution to the extensive generated data is to reduce the network’s size. We then categorized existing works into two main classes that reflect how the reduced network is generated. After that, we present new directions for reducing large-scale social network size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.statista.com/statistics/272014/global-social-networks-ranked-by-number-of-users/.

References

  1. Rhouma, D., Ben Romdhane, L.: An efficient multilevel scheme for coarsening large scale social networks. Appl. Intell. 48, 3557–3576 (2018)

    Article  Google Scholar 

  2. Jaouadi, M., Ben, R.L.: A distributed model for sampling large scale social networks. Expert Syst. Appl. 186, 115773 (2021)

    Article  Google Scholar 

  3. Hu, P., Lau, W.C.: A survey and taxonomy of graph sampling. CoRR (2013)

    Google Scholar 

  4. Liao, Q., Yang, Y.: Incremental algorithm based on wedge sampling for estimating clustering coefficient with MapReduce. In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 700–703 (2017)

    Google Scholar 

  5. Jure, L., Christos, F.: Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 631–636 (2006)

    Google Scholar 

  6. Seshadhri, C., Pinar, A., Kolda, T.: Edge sampling for computing clustering coefficients and triangle counts on large graphs. Stat. Anal. Data Min. 7, 294–307 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69, 026113 (2004)

    Article  Google Scholar 

  8. Wakisaka, Y., Yamashita, K., Tsugawa, S., Ohsaki, H.: On the effectiveness of random node sampling in influence maximization on unknown graph. In: 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 613–618 (2020)

    Google Scholar 

  9. Wang, W., Fu, X., Lin, X.: Edge-based sampling for complex network with self-similar structure. In: 2021 IEEE Intl Conference on Parallel and Distributed Processing with Applications, Social Computing and Networking, pp. 955–962 (2021)

    Google Scholar 

  10. Wu, M., Zhang, Q., Gao, Y., Li, N.: Graph signal sampling with deep Q-learning. In: 2020 International Conference on Computer Information and Big Data Applications (CIBDA), pp. 450–453 (2020)

    Google Scholar 

  11. Wang, R., et al.: Common neighbors matter: fast random walk sampling with common neighbor awareness. IEEE Trans. Knowl. Data Eng. (2022)

    Google Scholar 

  12. Zhu, J., Li, H., Chen, M., Dai, Z., Zhu, M.: Enhancing stratified graph sampling algorithms based on approximate degree distribution. In: Silhavy, R. (ed.) CSOC2018 2018. AISC, vol. 764, pp. 197–207. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91189-2_20

    Chapter  Google Scholar 

  13. Salamanos, N., Voudigari, E., Yannakoudakis, E.: Deterministic graph exploration for efficient graph sampling. Soc. Netw. Anal. Min. 7, 1–14 (2017)

    Article  Google Scholar 

  14. Khanam, K.Z., Srivastava, G., Mago, V.: The homophily principle in social network analysis: a survey. Multimed. Tools Appl. (2022)

    Google Scholar 

  15. Voudigari, E., Salamanos, N., Papageorgiou, T., Yannakoudakis, E.: Rank degree: an efficient algorithm for graph sampling. In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 120–129 (2016)

    Google Scholar 

  16. Zhang, L., Jiang, H., Wang, F., Feng, D.: DRaWS: a dual random-walk based sampling method to efficiently estimate distributions of degree and clique size over social networks. Knowl.-Based Syst. 198, 105891 (2020)

    Google Scholar 

  17. LaSalle, D., Karypis, G.: Multi-threaded modularity based graph clustering using the multilevel paradigm. J. Parallel Distrib. Comput. 76, 66–80 (2014)

    Article  Google Scholar 

  18. Hendrickson, B., Leland, R.: A multi-level algorithm for partitioning graphs. Supercomputing 1995: Proceedings of the 1995 ACM/IEEE Conference on Supercomputing, p. 28 (1995)

    Google Scholar 

  19. Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48, 96–129 (1998)

    Article  MATH  Google Scholar 

  20. Ahmed, N., Neville, J., Kompella, R.: Network sampling via edge-based node selection with graph induction. Department of Computer Science Technical Reports (2011)

    Google Scholar 

  21. Zhou, Z., et al.: Context-aware sampling of large networks via graph representation learning. IEEE Trans. Vis. Comput. Graph. 27, 1709–1719 (2021)

    Article  Google Scholar 

  22. Cai, G., Lu, G., Guo, J., Ling, C., Li, R.: Fast representative sampling in large-scale online social networks. IEEE Access 8, 77106–77119 (2020)

    Article  Google Scholar 

  23. Zhang, F., Zhang, S., Lightsey, C.: Implementation and evaluation of distributed graph sampling methods with spark. Electron. Imaging 1–9 (2018)

    Google Scholar 

  24. Gomez, K., Täschner, M., Rostami, M.A., Rost, C., Rahm, E.: Graph sampling with distributed in-memory dataflow systems. CoRR (2019)

    Google Scholar 

  25. Apache Spark. Apache Spark Lightning-Fast Cluster Computing (2015). Spark.Apache.Org. Last accessed April 2022

  26. Yang, D., Qin, X., Xu, X., Li, C., Wei, G.: Sample-efficient deep reinforcement learning with directed associative graph. China Commun. 18(6), 100–113 (2021)

    Article  Google Scholar 

  27. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: HARP: hierarchical representation learning for networks. CoRR (2017)

    Google Scholar 

  28. Preen, R.J., Smith, J.: Evolutionary \(n\)-level hypergraph partitioning with adaptive coarsening. IEEE Trans. Evol. Comput. 23, 962–971 (2019)

    Article  Google Scholar 

  29. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49, 291–307 (1970)

    Article  MATH  Google Scholar 

  30. Blondel, V., Guillaume, J., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. (2008)

    Google Scholar 

  31. Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 257–268. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02011-7_24

    Chapter  Google Scholar 

  32. Waltman, L., van Eck, N.J.: A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 86, 1–14 (2013)

    Article  Google Scholar 

  33. Chen, J., Saad, Y., Zhang, Z.: Graph coarsening: from scientific computing to machine learning. SeMA J. 79, 187–223 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, L.-C.: Graph sampling: an introduction. Surv. Stat. 83, 27–37 (2021)

    Google Scholar 

  35. Yanagiya, K., Yamada, K., Katsuhara, Y., Takatani, T., Tanaka, Y.: Edge sampling of graphs based on edge smoothness. In: ICASSP 2022 -IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5932–5936 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Jaouadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaouadi, M., Ben Romdhane, L. (2022). An Overview on Reducing Social Networks’ Size. In: Chen, W., Yao, L., Cai, T., Pan, S., Shen, T., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13725. Springer, Cham. https://doi.org/10.1007/978-3-031-22064-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22064-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22063-0

  • Online ISBN: 978-3-031-22064-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics