Abstract
Detecting anomalous behaviors in the blockchain is important for maintaining its integrity. An imminent challenge is to capture the evolving model of transactions in the network. Representing the network with a dynamic graph helps model the system’s time-evolving nature. However, as the graph evolves, real-world scenarios further stimulate the development of Graph Neural Networks (GNNs) to handle dynamic graph structures. In this paper, we propose a novel dynamic Graph Convolutional Network framework, namely EvAnGCN (Evolving Anomaly detection GCN), that helps detect anomalous behaviors in the blockchain. EvAnGCN exploits the time-based neighborhood feature aggregation of transactional features and the dynamic structure of the transaction network to detect anomalous nodes within the network. We conducted experiments on the Ethereum blockchain transaction dataset. Our experimental results demonstrate that EvAnGCH outperformed the baseline models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, R., Barve, S., Shukla, S.K.: Detecting malicious accounts in permissionless blockchains using temporal graph properties. Appl. Network Sci. 6(1), 1–30 (2021)
Beladev, M., Rokach, L., Katz, G., Guy, I., Radinsky, K.: tdGraphEmbed: temporal dynamic graph-level embedding. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 55–64. CIKM 2020, Association for Computing Machinery, New York, NY, USA (2020)
Cai, L., et al.: Structural temporal graph neural networks for anomaly detection in dynamic graphs. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3747–3756 (2021)
Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. In: Proceedings of the 202 International Conference on Machine Learning, pp. 1725–1735. PMLR (2020)
Chen, T., et al.: Understanding ethereum via graph analysis. ACM Trans. Internet Technol. (TOIT) 20(2), 1–32 (2020)
Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S.: Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. ACM (2020)
Farrugia, S., Ellul, J., Azzopardi, G.: Detection of illicit accounts over the ethereum blockchain. Expert Syst. Appl. 150, 113318 (2020)
Han, Y., Huang, G., Song, S., Yang, L., Wang, H., Wang, Y.: Dynamic neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021)
Lu, S., Gao, F., Piao, C., Ma, Y.: Dynamic weighted cross entropy for semantic segmentation with extremely imbalanced data. In: Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), pp. 230–233. IEEE (2019)
Manessi, F., Rozza, A., Manzo, M.: Dynamic graph convolutional networks. Pattern Recogn. 97, 107000 (2020)
Pareja, A., et al.: Evolvegcn: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)
Patel, V., Pan, L., Rajasegarar, S.: Graph deep learning based anomaly detection in ethereum blockchain network. In: Kutyłowski, M., Zhang, J., Chen, C. (eds.) NSS 2020. Lecture Notes in Computer Science(), vol. 12570, pp. 132–148. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65745-1_8
Skarding, J., Gabrys, B., Musial, K.: Foundations and modeling of dynamic networks using dynamic graph neural networks: a survey. IEEE Access 9, 79143–79168 (2021)
Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural networks for anomaly detection in attributed networks. Neural Comput. Appl. (2021)
Wang, Y., Wang, W., Liang, Y., Cai, Y., Hooi, B.: Progressive supervision for node classification. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 266–281. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_16
Weber, M., et al.: Anti-money laundering in bitcoin: experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)
Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the 2018 AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Zhang, L., Lu, H.: A feature-importance-aware and robust aggregator for GCN. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1813–1822. ACM (2020)
Zhao, T., Zhang, X., Wang, S.: Graphsmote: imbalanced node classification on graphs with graph neural networks. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 833–841 (2021)
Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2847–2856 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Patel, V., Rajasegarar, S., Pan, L., Liu, J., Zhu, L. (2022). EvAnGCN: Evolving Graph Deep Neural Network Based Anomaly Detection in Blockchain. In: Chen, W., Yao, L., Cai, T., Pan, S., Shen, T., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13725. Springer, Cham. https://doi.org/10.1007/978-3-031-22064-7_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-22064-7_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22063-0
Online ISBN: 978-3-031-22064-7
eBook Packages: Computer ScienceComputer Science (R0)