Skip to main content

EvAnGCN: Evolving Graph Deep Neural Network Based Anomaly Detection in Blockchain

  • Conference paper
  • First Online:
Advanced Data Mining and Applications (ADMA 2022)

Abstract

Detecting anomalous behaviors in the blockchain is important for maintaining its integrity. An imminent challenge is to capture the evolving model of transactions in the network. Representing the network with a dynamic graph helps model the system’s time-evolving nature. However, as the graph evolves, real-world scenarios further stimulate the development of Graph Neural Networks (GNNs) to handle dynamic graph structures. In this paper, we propose a novel dynamic Graph Convolutional Network framework, namely EvAnGCN (Evolving Anomaly detection GCN), that helps detect anomalous behaviors in the blockchain. EvAnGCN exploits the time-based neighborhood feature aggregation of transactional features and the dynamic structure of the transaction network to detect anomalous nodes within the network. We conducted experiments on the Ethereum blockchain transaction dataset. Our experimental results demonstrate that EvAnGCH outperformed the baseline models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.kaggle.com/ellipticco/elliptic-data-set.

  2. 2.

    http://xblock.pro/tx/.

References

  1. Agarwal, R., Barve, S., Shukla, S.K.: Detecting malicious accounts in permissionless blockchains using temporal graph properties. Appl. Network Sci. 6(1), 1–30 (2021)

    Article  Google Scholar 

  2. Beladev, M., Rokach, L., Katz, G., Guy, I., Radinsky, K.: tdGraphEmbed: temporal dynamic graph-level embedding. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 55–64. CIKM 2020, Association for Computing Machinery, New York, NY, USA (2020)

    Google Scholar 

  3. Cai, L., et al.: Structural temporal graph neural networks for anomaly detection in dynamic graphs. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3747–3756 (2021)

    Google Scholar 

  4. Chen, M., Wei, Z., Huang, Z., Ding, B., Li, Y.: Simple and deep graph convolutional networks. In: Proceedings of the 202 International Conference on Machine Learning, pp. 1725–1735. PMLR (2020)

    Google Scholar 

  5. Chen, T., et al.: Understanding ethereum via graph analysis. ACM Trans. Internet Technol. (TOIT) 20(2), 1–32 (2020)

    Article  Google Scholar 

  6. Dou, Y., Liu, Z., Sun, L., Deng, Y., Peng, H., Yu, P.S.: Enhancing graph neural network-based fraud detectors against camouflaged fraudsters. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management. ACM (2020)

    Google Scholar 

  7. Farrugia, S., Ellul, J., Azzopardi, G.: Detection of illicit accounts over the ethereum blockchain. Expert Syst. Appl. 150, 113318 (2020)

    Article  Google Scholar 

  8. Han, Y., Huang, G., Song, S., Yang, L., Wang, H., Wang, Y.: Dynamic neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021)

    Google Scholar 

  9. Lu, S., Gao, F., Piao, C., Ma, Y.: Dynamic weighted cross entropy for semantic segmentation with extremely imbalanced data. In: Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), pp. 230–233. IEEE (2019)

    Google Scholar 

  10. Manessi, F., Rozza, A., Manzo, M.: Dynamic graph convolutional networks. Pattern Recogn. 97, 107000 (2020)

    Google Scholar 

  11. Pareja, A., et al.: Evolvegcn: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)

    Google Scholar 

  12. Patel, V., Pan, L., Rajasegarar, S.: Graph deep learning based anomaly detection in ethereum blockchain network. In: Kutyłowski, M., Zhang, J., Chen, C. (eds.) NSS 2020. Lecture Notes in Computer Science(), vol. 12570, pp. 132–148. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65745-1_8

  13. Skarding, J., Gabrys, B., Musial, K.: Foundations and modeling of dynamic networks using dynamic graph neural networks: a survey. IEEE Access 9, 79143–79168 (2021)

    Article  Google Scholar 

  14. Wang, X., Jin, B., Du, Y., Cui, P., Tan, Y., Yang, Y.: One-class graph neural networks for anomaly detection in attributed networks. Neural Comput. Appl. (2021)

    Google Scholar 

  15. Wang, Y., Wang, W., Liang, Y., Cai, Y., Hooi, B.: Progressive supervision for node classification. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 266–281. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_16

    Chapter  Google Scholar 

  16. Weber, M., et al.: Anti-money laundering in bitcoin: experimenting with graph convolutional networks for financial forensics. arXiv preprint arXiv:1908.02591 (2019)

  17. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the 2018 AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  18. Zhang, L., Lu, H.: A feature-importance-aware and robust aggregator for GCN. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1813–1822. ACM (2020)

    Google Scholar 

  19. Zhao, T., Zhang, X., Wang, S.: Graphsmote: imbalanced node classification on graphs with graph neural networks. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining, pp. 833–841 (2021)

    Google Scholar 

  20. Zügner, D., Akbarnejad, A., Günnemann, S.: Adversarial attacks on neural networks for graph data. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2847–2856 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Patel, V., Rajasegarar, S., Pan, L., Liu, J., Zhu, L. (2022). EvAnGCN: Evolving Graph Deep Neural Network Based Anomaly Detection in Blockchain. In: Chen, W., Yao, L., Cai, T., Pan, S., Shen, T., Li, X. (eds) Advanced Data Mining and Applications. ADMA 2022. Lecture Notes in Computer Science(), vol 13725. Springer, Cham. https://doi.org/10.1007/978-3-031-22064-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22064-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22063-0

  • Online ISBN: 978-3-031-22064-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics