Skip to main content

Large k-Gons in a 1.5D Terrain

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13595))

Included in the following conference series:

  • 730 Accesses

Abstract

Given is a 1.5D terrain \(\mathcal {T}\), i.e., an x-monotone polygonal chain in \(\mathbb {R}^2\). For a given \(2\le k\le n\), our objective is to approximate the largest area or perimeter convex object of exactly or at most k vertices inside \(\mathcal {T}\). For a constant \(k\ge 3\), we design a near linear time FPTAS that approximates the largest convex polygons with at most k vertices, within a factor \((1-\epsilon )\). For the case where \(k=2\), we discuss an O(n) time exact algorithm for computing the longest line segment in \(\mathcal {T}\), and for \(k=3\), we design an \(O(n^2)\) time exact algorithm for computing the largest-perimeter triangle that lies within \(\mathcal {T}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    also known as interference detection or contact determination.

  2. 2.

    The extension of the Lemma 4 to this case follows from the convexity of the k-gon and is straightforward.

References

  1. Alt, H., Blömer, J., Wagener, H.: Approximation of convex polygons. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 703–716. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032068

    Chapter  Google Scholar 

  2. Cabello, S., Cibulka, J., Kyncl, J., Saumell, M., Valtr, P.: Peeling potatoes near-optimally in near-linear time. SIAM J. Comput. 46(5), 1574–1602 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cabello, S., Das, A.K., Das, S., Mukherjee, J.: Finding a largest-area triangle in a terrain in near-linear time. In: Lubiw, A., Salavatipour, M. (eds.) WADS 2021. LNCS, vol. 12808, pp. 258–270. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-83508-8_19

    Chapter  Google Scholar 

  4. Chang, J., Yap, C.: A polynomial solution for the potato-peeling problem. Discret. Comput. Geom. 1, 155–182 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chazelle, B., Sharir, M.: An algorithm for generalized point location and its applications. J. Symb. Comput. 10(3–4), 281–309 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daniels, K., Milenkovic, V., Roth, D.: Finding the largest rectangle in several classes of polygons. Harvard Computer Science Group, Technical Report TR-22-95 (1995)

    Google Scholar 

  7. Daniels, K.L., Milenkovic, V.J., Roth, D.: Finding the largest area axis-parallel rectangle in a polygon. Comput. Geom. 7, 125–148 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Das, A.K., Das, S., Mukherjee, J.: Largest triangle inside a terrain. Theoret. Comput. Sci. 858, 90–99 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goodman, J.E.: On the largest convex polygon contained in a non-convex \(n\)-gon, or how to peel a potato. Geom. Dedicata. 11(1), 99–106 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2(1), 209–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. 39(2), 126–152 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hall-Holt, O., Katz, M.J., Kumar, P., Mitchell, J.S., Sityon, A.: Finding large sticks and potatoes in polygons. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, vol. 6, pp. 474–483 (2006)

    Google Scholar 

  13. Karmakar, N., Biswas, A.: Construction of an approximate 3D orthogonal convex skull. In: Bac, A., Mari, J.-L. (eds.) CTIC 2016. LNCS, vol. 9667, pp. 180–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39441-1_17

    Chapter  Google Scholar 

  14. Lin, M., Gottschalk, S.: Collision detection between geometric models: a survey. In: Proceedings of IMA Conference on Mathematics of Surfaces, vol. 1, pp. 602–608. Citeseer (1998)

    Google Scholar 

  15. Löffler, M., van Kreveld, M.: Largest and smallest convex hulls for imprecise points. Algorithmica 56(2), 235–269 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE Comput. Graph. Appl. 21(3), 24–35 (2001)

    Article  Google Scholar 

  17. Melissaratos, E.A., Souvaine, D.L.: On solving geometric optimization problems using shortest paths. In: Proceedings of the Sixth Annual Symposium on Computational Geometry, Berkeley, pp. 350–359. ACM (1990)

    Google Scholar 

  18. Woo, T.C.: The convex skull problem. Technical report, Technical report TR 86–31, Department of Industrial and Operations (1986)

    Google Scholar 

Download references

Acknowledgment

Research was done with the institutional support RVO: 67985807, and also supported by Charles University project UNCE/SCI/004, and with the Czech Science Foundation, grant number GJ19-06792Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahideh Keikha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Keikha, V. (2022). Large k-Gons in a 1.5D Terrain. In: Zhang, Y., Miao, D., Möhring, R. (eds) Computing and Combinatorics. COCOON 2022. Lecture Notes in Computer Science, vol 13595. Springer, Cham. https://doi.org/10.1007/978-3-031-22105-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22105-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22104-0

  • Online ISBN: 978-3-031-22105-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics