Abstract
We show that every complete n-vertex simple topological graph contains a topological subgraph on at least \((\log n)^{1/4 - o(1)}\) vertices that is weakly isomorphic to the complete convex geometric graph or the complete twisted graph. This is the first improvement on the bound \(\varOmega (\log ^{1/8}n)\) obtained in 2003 by Pach, Solymosi, and Tóth. We also show that every complete n-vertex simple topological graph contains a plane path of length at least \((\log n)^{1 -o(1)}\).
Supported by NSF CAREER award DMS-1800746 and NSF award DMS-1952786.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ábrego, B., et al.: All good drawings of small complete graphs. In: Proceedings 31st European Workshop on Computational Geometry, pp. 57–60 (2015)
Aichholzer, O., García, A., Tejel, J., Vogtenhuber, B., Weinberger, A.: Twisted ways to find plane structures in simple drawings of complete graphs, In Proceedings 38th Symposium Computational Geometry, LIPIcs, Dagstuhl, Germany, pp. 1–18 (2022)
Alon, N., Spencer, J.: The Probabilistic Method, 4th edn. John Wiley & Sons Inc., Hoboken, New Jersey (2016)
Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer-Verlag, Berlin, Germany (2005). https://doi.org/10.1007/0-387-29929-7
Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. of Math. 51, 161–166 (1950)
Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compos. Math. 2, 463–470 (1935)
Fox, J., Pach, J., Sudakov, B., Suk, A.: Erdős-Szekeres-type theorems for monotone paths and convex bodies. Proc. Lond. Math. Soc. 105, 953–982 (2012)
Fulek, R., Ruiz-Vargas, A.: Topological graphs: empty triangles and disjoint matchings. In: Proceedings 29th Symposium Computational Geometry, pp. 259–265. ACM Press, New York (2013)
Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified points. Am. Math. Mon. 98, 165–166 (1991)
Harborth, H., Mengersen, I.: Drawings of the complete graph with maximum number of crossings. Congr. Numer. 88, 225–228 (1992)
Kynčl, J.: Improved eumeration of simple topological graphs. Disc. Comput. Geom. 50, 727–770 (2013)
Kynčl, J., Valtr, P.: On edges crossing few other edges in simple topological complete graphs. Discret. Math. 309, 1917–1923 (2009)
Pach, J.: Geometric graph theory. In: Goodman, J., O’Rourke, J., Tóth, C. (eds.) Handbook of Discrete and Computational Geometry, 3rd edition, CRC Press, Boca Raton, Florida, pp. 257–279 (2017)
Pach, J., Solymosi, J., Tóth, G.: Unavoidable configurations in complete topological graphs. Disc. Comput. Geom. 30, 311–320 (2003)
Pach, J., Tóth, G.: Disjoint edges in topological graphs. In: Akiyama, J., Baskoro, E.T., Kano, M. (eds.) IJCCGGT 2003. LNCS, vol. 3330, pp. 133–140. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30540-8_15
Ruiz-Vargas, A.: Many disjoint edges in topological graphs. Comput. Geom. 62, 1–13 (2017)
Ruiz-Vargas, A., Suk, A., Tóth, C.: Disjoint edges in topological graphs and the tangled-thrackle conjecture. European J. Combin. 51, 398–406 (2016)
Scheucher, M.: Personal communication
Suk, A.: Disjoint edges in complete topological graphs. Disc. Comput. Geom. 49, 280–286 (2013)
Suk, A.: On the Erdos-Szekeres convex polygon problem. J. Amer. Math. Soc. 30, 1047–1053 (2017)
Suk, A., Walczak, B.: New bounds on the maximum number of edges in \(k\)-quasi-planar graphs. Comput. Geom. 50, 24–33 (2015)
Tóth, G.: Note on geometric graphs. J. Combin. Theory Ser. A 89, 126–132 (2000)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Suk, A., Zeng, J. (2023). Unavoidable Patterns in Complete Simple Topological Graphs. In: Angelini, P., von Hanxleden, R. (eds) Graph Drawing and Network Visualization. GD 2022. Lecture Notes in Computer Science, vol 13764. Springer, Cham. https://doi.org/10.1007/978-3-031-22203-0_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-22203-0_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22202-3
Online ISBN: 978-3-031-22203-0
eBook Packages: Computer ScienceComputer Science (R0)