Skip to main content

Compatible Spanning Trees in Simple Drawings of \(K_n\)

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2022)

Abstract

For a simple drawing D of the complete graph \(K_n\), two (plane) subdrawings are compatible if their union is plane. Let \(\mathcal {T}_D\) be the set of all plane spanning trees on D and \(\mathcal {F}(\mathcal {T}_D)\) be the compatibility graph that has a vertex for each element in \(\mathcal {T}_D\) and two vertices are adjacent if and only if the corresponding trees are compatible. We show, on the one hand, that \(\mathcal {F}(\mathcal {T}_D)\) is connected if D is a cylindrical, monotone, or strongly c-monotone drawing. On the other hand, we show that the subgraph of \(\mathcal {F}(\mathcal {T}_D)\) induced by stars, double stars, and twin stars is also connected. In all cases the diameter of the corresponding compatibility graph is at most linear in n.

This work was initiated at the 6th DACH Workshop on Arrangements and Drawings in Stels, August 2021. We thank all participants, especially Nicolas Grelier and Daniel Perz, for fruitful discussions. O.A., R.P. and A.W. are supported by FWF grant W1230. K.K. is supported by the German Science Foundation (DFG) within the research training group ‘Facets of Complexity’ (GRK 2434). W.M. is partially supported by the German Research Foundation within the collaborative DACH project Arrangements and Drawings as DFG Project MU 3501/3–1, and by ERC StG 757609. J.O. is supported by ERC StG 757609. M.M.R. is supported by the Swiss National Science Foundation within the collaborative DACH project Arrangements and Drawings as SNSF Project 200021E-171681. (Also note that this author’s full last name consists of two words and is Mallik Reddy. However, she consistently refers to herself with the first word of her last name being abbreviated.) B.V. was partially supported by the Austrian Science Fund (FWF) within the collaborative DACH project Arrangements and Drawings as FWF project I 3340-N35.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aichholzer, O., et al.: Compatible geometric matchings. Comput. Geom. Theory Appl. 42(6–7), 617–626 (2009). https://doi.org/10.1016/j.comgeo.2008.12.005

  2. Aichholzer, O., García, A., Hurtado, F., Tejel, J.: Compatible matchings in geometric graphs. In: Proceedings of the XIV Encuentros de Geometría Computacional (EGC2011), pp. 145–148 (2011)

    Google Scholar 

  3. Aichholzer, O., Asinowski, A., Miltzow, T.: Disjoint compatibility graph of non-crossing matchings of points in convex position. Electron. J. Comb. 22, 1 (2015)

    Google Scholar 

  4. Aichholzer, O., Aurenhammer, F., Huemer, C., Krasser, H.: Transforming spanning trees and pseudo-triangulations. Inf. Process. Lett. 97(1), 19–22 (2006). https://doi.org/10.1016/j.ipl.2005.09.003. https://www.sciencedirect.com/science/article/pii/S0020019005002486

  5. Aichholzer, O., Barba, L., Hackl, T., Pilz, A., Vogtenhuber, B.: Linear transformation distance for bichromatic matchings. Comput. Geom. Theory Appl. 68, 77–88 (2018). https://doi.org/10.1016/j.comgeo.2017.05.003

    Article  MathSciNet  Google Scholar 

  6. Aichholzer, O., et al.: Compatible spanning trees in simple drawings of \( K_n\). arXiv preprint (2022). http://arxiv.org/abs/2208.11875

  7. Aichholzer, O., Parada, I., Scheucher, M., Vogtenhuber, B., Weinberger, A.: Shooting stars in simple drawings of \(K_{m, n}\). In: Proceedings of \(35^{th}\) European Workshop on Computational Geometry EuroCG 2019, pp. 59:1–59:6. Utrecht, The Netherlands (2019). http://www.eurocg2019.uu.nl/papers/59.pdf

  8. Aloupis, G., Barba, L., Langerman, S., Souvaine, D.: Bichromatic compatible matchings. Comput. Geom. Theory Appl. 48(8), 622–633 (2015). https://doi.org/10.1016/j.comgeo.2014.08.009

    Article  MathSciNet  Google Scholar 

  9. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009). https://doi.org/10.1016/j.comgeo.2008.04.001. https://www.sciencedirect.com/science/article/pii/S0925772108000370

  10. Buchin, K., Razen, A., Uno, T., Wagner, U.: Transforming spanning trees: a lower bound. Comput. Geom. 42(8), 724–730 (2009). https://doi.org/10.1016/j.comgeo.2008.03.005

    Article  MathSciNet  Google Scholar 

  11. García, A., Pilz, A., Tejel, J.: On plane subgraphs of complete topological drawings. ARS Math. Contemporanea 20, 69–87 (2021). https://doi.org/10.26493/1855-3974.2226.e93

  12. Ishaque, M., Souvaine, D.L., Tóth, C.D.: Disjoint compatible geometric matchings. Discrete Comput. Geom. 49(1), 89–131 (2012). https://doi.org/10.1007/s00454-012-9466-9

    Article  MathSciNet  Google Scholar 

  13. Lawson, C.L.: Transforming triangulations. Discrete Math. 3(4), 365–372 (1972)

    Article  MathSciNet  Google Scholar 

  14. Rafla, N.H.: The good drawings \(D_n\) of the complete graph \(K_n\), Ph. D. thesis, McGill University, Montreal (1988). https://escholarship.mcgill.ca/concern/file_sets/cv43nx65m?locale=en

  15. Schaefer, M.: The graph crossing number and its variants: a survey. Electron. J. Comb. 1000 (2013). https://www.combinatorics.org/DS21

  16. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresber. Dtsch. Mathematiker-Ver. 46, 26–32 (1936). http://eudml.org/doc/146109

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosna Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aichholzer, O. et al. (2023). Compatible Spanning Trees in Simple Drawings of \(K_n\). In: Angelini, P., von Hanxleden, R. (eds) Graph Drawing and Network Visualization. GD 2022. Lecture Notes in Computer Science, vol 13764. Springer, Cham. https://doi.org/10.1007/978-3-031-22203-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22203-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22202-3

  • Online ISBN: 978-3-031-22203-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics