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Abstract. Shape-based metrics measure how faithfully a drawing D rep-
resents the structure of a graph G, using the proximity graph S of D.
While some limited graph classes admit proximity drawings (i.e., op-
timally shape-faithful drawings, where S = G), algorithms for shape-
faithful drawings of general graphs have not been investigated.

In this paper, we present the first study for shape-faithful drawings of
general graphs. First, we conduct extensive comparison experiments for
popular graph layouts using the shape-based metrics, and examine the
properties of highly shape-faithful drawings. Then, we present ShFR and
ShSM , algorithms for shape-faithful drawings based on force-directed
and stress-based algorithms, by introducing new proximity forces/stress.
Experiments show that ShFR and ShSM obtain significant improve-
ment over FR (Fruchterman-Reingold) and SM (Stress Majorization),
on average 12% and 35% respectively, on shape-based metrics.

1 Introduction

Recently, shape-based metrics [7] have been introduced for evaluating the quality
of large graph drawing. It measures how faithfully the “shape” of a drawing D
represents the ground truth structure of a graph G, by comparing the similarity
between the proximity graph S of the vertex point set of D and the graph G.

For a point set P in the plane, proximity graphs are defined as: two points
are connected by an edge if they are “close enough”. Specifically, a proximity
region is defined for each pair of points, and if the proximity region is empty,
the points are connected by an edge in the proximity graph [23].

Some limited graph classes always admit a proximity drawing D, where the
graph G is realized as a proximity graph S in D. For such proximity drawable
graph classes, some characterizations are known, and algorithms to construct
such proximity drawings are available [1,3]. Consequently, such proximity draw-
ings are optimally shape-faithful (i.e, shape-based metric of 1), since S = G.

However, such optimally shape-faithful drawings are only applicable for very
limited graph classes. Algorithms to optimize shape-based metrics for general
graphs (i.e., not proximity drawable graphs) have not been studied yet.

In this paper, we present the first study for shape-faithful drawings of general
graphs. Specifically, our main contributions can be summarized as follows:
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1. We evaluate the shape-faithfulness of popular graph drawing algorithms for
various proximity drawable graph classes, including strong proximity draw-
able graphs (i.e., the best possible shape-based metric is 1), almost proximity
drawable graphs with some forbidden subgraphs, weak proximity drawable
graphs, and mesh graphs.
Experiments show that tsNET [16] obtains the highest shape-faithfulness
on most large graph instances, for strong and almost proximity drawable
graphs, and stress-based layouts [11] achieve good results on mesh graphs.

2. We present ShFR and ShSM , algorithms for shape-faithful drawings for
general graphs, based on the force-directed and stress-based layouts, by in-
troducing new proximity forces/stress.
Experiments with strong proximity drawable graphs, scale-free graphs and
benchmark graphs show that ShFR and ShSM obtain significant improve-
ment (on average, 12% and 35%) on the shape-based metrics over FR
(Fruchterman-Reingold) [9] and SM (Stress Majorization) [11].

2 Related Work

2.1 Shape-Based Metrics

Shape-based metrics measure how faithfully the “shape” of a drawing D rep-
resents the ground truth structure of a graph G, by comparing the similarity
between the proximity graph S of the vertex point set of D and the graph G [7].

Specifically, the shape-based metrics use proximity graphs such as the Gabriel
Graph (GG) and Relative Neighborhood Graph (RNG) (defined in Section
2.2). To compute the similarity between G and S, both with vertex set V , the
shape-based metrics use the Jaccard Similarity (JS) [15] as follows: JS(G,S) =
1
|V |

∑
v∈V

NG(v)∩NS(v)
NG(v)∪NS(v) , where NG(v) (resp., NS(v)) is the set of neighbors of

vertex v in G (resp., S). We denote the shape-based metrics computed with this
formula using RNG (resp., GG) as QRNG (resp., QGG), having values between
0 and 1 where 1 means perfectly shape-faithful.

2.2 Proximity Graphs

For a point set P in the plane, a proximity graph S of P is roughly defined as fol-
lows: two points are connected by an edge if and only if they are “close enough”.
Namely, the proximity region defined for the two points should be empty (i.e.,
contains no other points) [23,24]. For example, Gabriel Graph (GG) [10] (resp.,
Relative Neighborhood Graph (RNG) [25]) is a proximity graph where two points
x and y are connected by an edge if and only if the closed disk (resp., open lens)
having line segment xy as its diameter contains no other points.

For strong proximity, two conditions must be fulfilled: (a) two points are
connected by an edge only if their proximity region is empty, and (b) two points
are not connected by an edge only if their proximity region is not empty [2].

A relaxation of condition (b) gives rise to the definition of weak proximity,
where the proximity graph may omit an edge between points x and y even if their



proximity region is empty [2]. Namely, while points need to be “close enough”
to be connected by an edge in the proximity graph S, points can be made to be
not connected by an edge in S even if they are “close enough”.

2.3 Proximity Graph Drawing

Characterizations of strong proximity drawable graphs (i.e., graphs that admit a
proximity drawing D, where the graph G is realized as a proximity graph S = G
in D) are known for RNG and GG [3,17]:

– RNG-drawable graphs: trees with maximum degree 5, maximal outerplanar
graphs, biconnected outerplanar graphs

– GG-drawable graphs: trees with maximum degree 4 and no degree 4 vertex
with all “wide” subtrees, maximal and biconnected outerplanar graphs

Moreover, forbidden subgraphs have also been characterized: no GG- and
RNG-drawable graphs may contain K4 and K2,3 as subgraphs [10].

Characterizations of weak proximity drawable graphs include wider classes:

– trees (regardless of maximum degree): weak GG- and RNG-drawable [2]
– 1-connected outerplanar graphs with no vertex of degree 1: weak GG-drawable [8].

Algorithms to construct proximity drawings of both strong and weak prox-
imity drawable graphs are available [2,3,17], although implementations are un-
available and challenging due to requiring precise geometric computations. For
details on proximity graph drawing, see a survey [19].

3 Graph Layout Comparison Experiments

3.1 Experiment Design and Data Sets

In this Section, we present extensive experiments using the shape-based metrics
QRNG and QGG to compare popular graph drawing algorithms:

– Force-directed layouts: Fruchterman-Reingold (FR) [9], Organic (OR) [27].
– Multi-level force-directed layouts: FM3 [12], sfdp [14].
– Backbone layout (BB) [22], which untangles hairballs in a drawing.
– LinLog layout (LL) [21], a force-directed algorithm displaying clusters.
– Stress-based layouts to minimize the stress: Stress Majorization (SM) [11],

Stochastic Gradient Descent (SGD) [28].
– tsNET layout [16], based on the t-SNE dimension reduction [20].
– Walker’s level drawing algorithm (W ) for trees [26].
– Chrobak and Kant algorithm (CK) [5] for convex grid drawings of tricon-

nected planar graphs in quadratic area.



For data sets, we generate graphs with various sizes: small graphs with 50-250
vertices, medium graphs with 250-500 vertices, and large graphs with 500-1000
vertices. Furthermore, we consider graph types based on proximity drawability
characterization: strong proximity drawable graphs, almost proximity drawable
graphs, and weak proximity drawable graphs. We also use mesh graphs, which
do not fall into known proximity drawability characterizations. For each graph
type and size, we generate ten graph instances.

Strong Proximity Drawable Graphs: We generate strong proximity draw-
able graphs based on known characterizations [3,17]:

– Maximum outerplanar graphs, generated using the connected planar graph
generator of OGDF [4].

– Biconnected outerplanar graphs: We start G as a cycle of random length ≤
the target size n. Then, select an edge (u, v) in G that is only involved in
one cycle. Select a cycle length x < n, create a path p of length x − 2, and
add an edge between u and the first vertex of p, and between v and the last
vertex of p. Repeat while the number of vertices in G is less than n.

– Proximity drawable trees, generated using the random tree generator of
OGDF: For RNG-drawable trees, we set the maximum vertex degree as
5; for GG-drawable trees, we set the maximum vertex degree as 4, and then
prune forbidden subtrees until the tree contains no more forbidden subtrees.

Almost Proximity Drawable Graphs with Forbidden Subgraphs: We
start with a strong proximity drawable graph G, and then add a few edges
and/or vertices to create a forbidden subgraph. The number of edges (resp.,
vertices) added are limited to at most 10 (resp., 5). Specifically, we perform two
types of forbidden subgraph augmentation:

– L-AUG (Local Augmentation) graphs: We choose a vertex v of G and add
new vertices and edges around v to create a forbidden subgraph F .

– F-AUG (Global Augmentation) graphs: We select a subset of vertices of G, all
separated by a shortest path length above a predefined threshold, and add
edges between the selected vertices to create a forbidden subgraph F .

Weak Proximity Drawable Graphs: We also use weak proximity drawable
graphs based on the weak proximity drawability characterization [2]:

– 1-connected outerplanar graph with a minimum degree of 2, which are weak
GG-drawable [8]: We generate the graphs in a similar way to the bicon-
nected outerplanar graphs, however alternately appending the new cycle to
a random vertex rather than a random edge.

Mesh Graphs: We use simple mesh graphs containing no chordless cycles of
length > 3, from the jagmesh set of the SuiteSparse Matrix collection [6]. These
graphs are not part of known proximity drawability characterizations, but can be
drawn as an RNG drawing, by drawing each 3-cycle as an equilateral triangle.



(a) Small (b) Medium (c) Large

Fig. 1. Average QRNG for trees. LL, OR, and sfdp consistently perform well, with
tsNET performing much better on large trees. Even the highest-performing layouts
are still far from optimal shape-faithfulness (QRNG = 1).

(a) Small (b) Medium (c) Large

Fig. 2. Average QRNG for maximum outerplanar graphs. tsNET and CK are the
top performing layouts on medium and large graphs. For highest-performing layouts,
QRNG is slightly closer to optimal compared to RNG-drawable trees.

3.2 Results

Strong Proximity Drawable Graphs On strong proximity drawable trees, all
the drawing algorithms used fail to obtain shape-based metrics close to optimal.

Figure 1 shows the average QRNG for RNG-drawable trees. On small trees,
the best performing layouts, OR, BB, multi-level layouts, and stress-based lay-
outs, only obtain QRNG of 0.5-0.6 on average. tsNET becomes the best per-
forming layout on medium and large trees, with QRNG of about 0.4 on average.
On large trees, the differences in QRNG between layouts are more pronounced,
with tsNET and LL performing the best, followed by sfdp and OR.

For small proximity drawable outerplanar graphs (both GG- and RNG-
drawable), the best performing layouts, stress-based layouts and BB, obtain
QRNG of around 0.7 (see Figure 2). This is notably closer to optimal compared
to RNG-drawable trees, where all layouts obtain average QRNG of at most 0.6.

tsNET and CK are the top performing layouts on medium and large outer-
planar graphs, despite lower performance on small graphs: on medium and large
maximum outerplanar graphs, tsNET (resp., CK) obtains QRNG of 0.6 (resp.,
0.5) on average. This is closer to optimal compared to large RNG-drawable trees,
where tsNET , the best performing layout, only obtains average QRNG of 0.4.

For GG-drawable trees, the results on QGG are mostly similar to QRNG;
similarly, for GG-drawable outerplanar graphs (same set of graphs as RNG-
drawable outerplanar graphs), the results on QGG are similar to QRNG. For
details, see Figures 7 and 8 in Appendix B.



Table 1. Example layout comparison for a large RNG-drawable tree.

BB FM3 FR LL OR

sfdp SGD SM tsNET W

Table 2. Example layout comparison for a large maximum outerplanar graph.

BB FM3 FR LL OR

sfdp SGD SM tsNET CK

Table 1 shows a visual comparison of graph layouts on a large RNG-drawable
tree. For the best performing layouts tsNET and LL, subtrees closer to the
leaves are often “compacted” together, compared to the second best performing
layouts such as OR and sfdp, where all branches are more “opened” up.

Table 2 shows a visual comparison of layouts on a maximal outerplanar graph.
The best performing layout, tsNET , collapses the faces on the periphery, com-
pared to the faces in the middle of the drawing. The “long” drawing of CK may
have obtained a comparable effect, producing high shape-based metrics.



(a) L-AUG (b) F-AUG

Fig. 3. Average QRNG for L-AUG and F-AUG graphs, compared to RNG-drawable trees.
tsNET obtains the highest shape-based metrics; surprisingly, QRNG is sometimes
higher on L-AUG and F-AUG than on the strong proximity drawable graphs.

Table 3. Example layout comparison for a medium F-AUG graph.

BB FM3 FR LL OR

sfdp SGD SM tsNET

Almost Proximity Drawable Graphs In general, the ranking of the graph
drawing algorithms on the shape-based metrics do not change much between
strong proximity drawable graphs and almost proximity drawable graphs.

Figure 3 shows comparisons on QRNG for the base RNG-drawable trees and
the L-AUG and F-AUG graphs, where tsNET still obtains the highest QRNG. LL
also obtains the second highest QRNG, although with a smaller difference to the
next best performing layouts OR and sfdp, compared to RNG-drawable trees.

Table 3 shows a visual comparison on a F-AUG graph, where the layouts with
highest shape-based metrics, such as tsNET and LL, draw the “branches” in
the periphery of the drawing in a more compact way, than other layout. This
observation is consistent with the pattern also seen in the visual comparison for
strong proximity drawable trees and outerplanar graphs.



(a) Small (b) Medium (c) Large

Fig. 4. Average QGG for 1-connected outerplanar graphs. OR and CK performs the
best on large 1-connected outerplanar graphs.

Table 4. Example layout comparison for a large 1-connected outerplanar graph.

BB FM3 FR LL OR

sfdp SGD SM tsNET CK

Weak Proximity Drawable Graphs For weak GG-drawable 1-connected out-
erplanar graphs, OR surprisingly obtains the highest QGG on large 1-connected
outerplanar graphs, followed by CK and tsNET; see Figure 4.

Table 4 shows a visual comparison, where OR draws a number of chordless
cycles with their vertices in a regular polygon configuration. In fact, this is the
correct way to draw such cycles as GG, resulting in high QGG.

Mesh Graphs On mesh graphs, the best performing layouts, stress-based lay-
outs, obtain on average much higher shape-based metrics than on other strong
proximity drawable graphs, see Figure 5. In particular, SGD and SM obtain
near-perfect shape-based metrics (QRNG = 0.99 on average), and OR and BB
also obtain very high shape-based metrics (QRNG = 0.98 on average). On the
other hand, tsNET obtains comparatively lower shape-based metrics.

Table 5 shows a visual comparison on a mesh graph; most layouts manage
to untangle the mesh. Furthermore, SGD and SM manage to untangle without
twists or “distortions”, where triangles in the periphery are more “squashed”
compared to the triangles in the middle, as seen in sfdp or tsNET layouts.



Fig. 5. Average QRNG for mesh graphs. Stress-based layouts obtain the best shape-
based metrics, at almost perfect.

Table 5. Example layout comparison for mesh.

BB FM3 FR LL OR

sfdp SGD SM tsNET CK

3.3 Discussion and Summary

Overall, tsNET performs the best on large strong proximity drawable graphs,
followed by LL. Looking at the visual comparison, these layouts often “collapse”
subgraphs on the periphery. This may have lead to fewer non-adjacent vertices
being close to each other, leading to better shape-based metrics. Moreover, this
improvement compared to other layouts is more apparent in larger graphs, where
the larger number of vertices means more non-adjacent vertices being close to
each other in drawings where subgraphs on the periphery are not “collapsed”.

Most layout algorithms are better at computing drawings closer to opti-
mal shape-faithfulness for dense strong proximity drawable graphs: the best-
performing layouts, tsNET and LL, obtain much higher average shape-based
metrics on outerplanar graphs compared to trees. Lower density means more
pairs of vertices are not adjacent in G, i.e., more proximity regions need to be
non-empty in D.

The mesh graphs are drawn as RNG by drawing each face as equilateral
triangles, i.e., having uniform edge lengths, a readability metric which is often
used as a goal for a number of layout algorithms. This may be why more layout



algorithms, especially stress-based layouts which emphasize distance faithfulness,
are able to produce almost-perfect shape-faithful drawings for the mesh graphs.

4 Algorithms for Shape-Faithful Graph Drawings

In this Section, we present algorithms for shape-faithful drawings. Based on the
qualitative observations from the layout comparison experiments in Section 3,
high shape-based metrics are obtained often by “collapsing” subgraphs on the
drawing’s periphery - this keeps non-adjacent vertices in G distant from each
other, and adjacent vertices in the collapsed subgraphs within close proximity.
Therefore, our main idea for shape-faithful graph drawings is to “drive away”
non-adjacent vertices in G that are geometrically too close in the drawing D.

Specifically, we present two algorithms ShFR and ShSM based on two popu-
lar graph drawing algorithms, force-directed and stress minimization algorithms.
ShFR and ShSM aim to improve shape-based metrics by introducing two new
types of proximity forces/stress. For a pair of adjacent vertices v and u in G and
another vertex of t currently located in the proximity region of v and u in D:

– proximity repulsion force/stress: push t out of the proximity region of u, v;
– proximity attraction force/stress: pull v and u closer together.

4.1 ShFR: Force-Directed Layout for Shape-Faithful Drawings

We present ShFR, a force-directed layout for shape-faithful drawing, incorpo-
rating proximity forces with Fruchterman-Reingold (FR) [9].

To explain the design rationale for ShFR, consider the following case: for a
pair of adjacent vertices u and v in a graph G = (V,E), the edge (u, v) does not
exist in the proximity graph S = (V,E′) of a drawing D of G, due to a vertex t
located inside the proximity region of u and v in D. For such a case, to add back
the edge (u, v) in the proximity graph S to achieve S = G, we introduce two
new proximity forces: (1) repulsion force to repel t out of the proximity region
of u and v; (2) attraction force on u and v to shrink the proximity region.

We first add a proximity repulsion force to drive t out of the proximity region
of u and v in D. From the midpoint m between u and v, we add a repulsion
force acting on t, with a magnitude proportional to how far t needs to be away
from m in order to be driven out of the proximity region of u and v. Specifically,
the x-displacement of t induced by the repulsion force can be computed as:

xt−xm

||Xt−Xm||2 fl
2 ||Xv−Xu||
||Xt−Xm|| , where xt is the x-coordinate of t, ||Xt − Xm|| is the

Euclidean distance between t and m, l is the parameter for ideal spring length
(i.e., target edge length), and f is the parameter for spring stiffness.

Next, we add a proximity attraction force for a pair of adjacent vertices u
and v in G with non-empty proximity regions. Specifically, we add an attraction
force acting between u and v: (xu − xv)(||Xv −Xu||)l−1.

The new proximity forces can be added to any force-directed algorithms. For
our specific implementation, we add the proximity forces in conjunction with FR,



where the proximity force computations are added to each force computation
iteration of FR. For details, see Algorithm 1 in Appendix C.

GG and RNG are subgraphs of the Delaunay Triangulation, which can be
computed in O(n log n) time [23]. The original FR algorithm runs in O(n2) time.
Therefore, the total runtime of ShFR is O(n2).

4.2 ShSM : Stress-Based Layout for Shape-Faithful Drawings

We now present ShSM for shape-faithful drawing, incorporating proximity stress
with Stress Majorization (SM) [11]. Similar to the force-directed case, for each
case where in drawing D a vertex t lies in the proximity region of two neighboring
vertices v and u, i.e. (u, v) ∈ E but (u, v) /∈ E′, we add two new types of stress:
(1) repulsion stress to push t out of the proximity region; (2) attraction stress
to pull v and u closer together.

We first add the proximity repulsion stress by exerting stress on t from the
midpoint m of u and v. Specifically, we compute the x-displacement of t due to
the stress between t and m as wuv(xm) + duv(xm−xt)||Xv −Xu||/||Xt−Xm||),
where duv is the shortest path distance between u and v and wuv is the weight
computed for the vertex pair u and v, often computed as (duv)k for a constant
k. Since m is not an actual vertex of G, there is no graph theoretic distance or
weight between m and t; we instead use duv and wuv, and then scale them based
on the ratio of the Euclidean distances between u, v, and between t,m.

We next add the proximity attraction stress which has a weight lower than
the standard stress of SM , to attract u and v closer in order to to reduce the
distance between u and v. The x-displacement of v due to this additional stress
is computed as w′uv(xu)+duv(xv−xu)/||Xv−Xu||), where w′uv = wk′

uv for k′ < 1.
The new proximity stress can be added to any stress-based algorithms. For

our specific implementation, we add the proximity stress in conjunction with
SM , where the proximity stress computations are added to each stress compu-
tation iteration of SM . For details, see Algorithm 2 in Appendix D.

As with ShFR, GG and RNG can be computed in O(n log n) time and the
original stress computation of SM takes O(n2) time. The total runtime of ShSM
is therefore O(n2).

5 ShFR and ShSM Experiments

5.1 Experiment Design and Data Sets

In this experiment, we evaluate the effectiveness of ShFR and ShSM over FR
and SM respectively, using shape-based metrics QRNG and QGG.

For data sets, we use strong proximity drawable graphs, as well as scale-free
graphs and benchmark graphs:

– strong proximity drawable graphs, from Section 3.
– scale-free graphs: We generate synthetic scale-free graphs with density 2, 3,

and 5, using the NetworkX [13] scale-free generator.



– benchmark graphs, including real-world scale-free graphs [6,18,29] with up
to 6000 vertices and 15000 edges. For details, see Table 8 in Appendix A.

To measure the improvement of the shape-based metrics, for example, on

QRNG by ShFR over FR, we define the formula I(QRNG) = QRNG(ShFR)−QRNG(FR)
QRNG(FR) .

We use the same formula for QGG, and for the improvement by ShSM over SM .

5.2 Results

ShFR obtains notable improvement over FR on QRNG and QGG for large strong
proximity drawable graphs, obtaining average improvement of 15%, 12%, and
12% on maximum outerplanar graphs, biconnected outerplanar graphs, and trees
respectively, see Figure 6 (a). ShFR also obtains significant improvement over
FR on QGG for scale-free graphs, at on average 18%. For real-world benchmark
graphs, the improvement on QRNG and QGG average at around 10%.

(a) ShFR improvement (b) ShSM improvement

Fig. 6. Average shape-based metrics improvement (in percent) of ShFR over FR and
ShSM over SM on QRNG and QGG. ShFR and ShSM obtain significant improvement
over FR and SM respectively on all data sets.

ShSM obtains significant improvement over SM for strong proximity draw-
able graphs, see Figure 6 (b). For maximum outerplanar graphs, ShSM obtains
significant improvement over SM (average 20% and 25%) on QRNG and QGG

respectively, which is much higher than the improvement by ShFR over FR. For
biconnected outerplanar graphs, an even larger improvement of on average 40%
is achieved on QGG. For large trees, ShSM also obtains significant improvement
over SM , on average 18% and 30% on QRNG and QGG, respectively.

ShSM also obtains significant improvement over SM for scale-free graphs,
on average 20% improvement on QRNG. Notably, the largest improvement is
obtained by ShSM on QGG for scale-free graphs, at over 70%, on scale-free
graphs. Note that ShSM obtains on average 20% and 42% improvement over
SM for real-world benchmark graphs, on QRNG and QGG respectively.

Table 6 shows a visual comparison of FR and ShFR on the benchmark
scale-free graph G 4. ShFR untangles the “hairball” more clearly, compared to



Table 6. Visual comparison of FR and ShFR, SM and ShSM on benchmark graphs.
ShFR often untangles the hairballs better than FR, and ShSM expands faces that
are “collapsed” by SM .

FR ShFR

G 4

SM ShSM

netscience

FR. Table 6 also shows a visual comparison of SM and ShSM on the bench-
mark scale-free graph netscience. ShSM “expands” faces that are “squashed”
in SM , showing the local neighborhood of some vertices more clearly. However,
the expanded faces also leads to the drawing feeling more “crowded” compared
to SM , thus increasing faithfulness but affecting readability. For more visual
comparisons on other data sets, see Table 9 in Appendix E.

5.3 Discussion and Summary

Our extensive experiments demonstrate the effectiveness of ShFR and ShSM for
shape-faithful drawings. ShFR (resp., ShSM) obtains significant improvement
over FR (resp., SM) of 11% and 13% (resp., 20% and 50%) on QRNG and QGG

respectively, averaged over all data sets.
For strong proximity drawable graphs, ShFR (resp., ShSM) obtains im-

provement over FR (resp., SM) of on average 13% and 13% (resp., 20% and
30%) on QRNG and QGG respectively. For real-world benchmark graphs, ShFR
(resp., ShSM) obtains improvement over FR (resp., SM) of on average 10%
and 10% (resp., 20% and 43%) on QRNG and QGG respectively. For scale-free



graphs, ShFR (resp., ShSM) obtains improvement over FR (resp., SM) of on
average 10% and 16% (resp., 17% and 70%) on QRNG and QGG respectively.
Notably, the QGG improvement of ShSM over SM on scale-free graphs at 70%
is the largest among all data sets.

The improvements are much higher for large graphs. In general, large graphs
have many vertex pairs, with a high ratio of non-adjacent vertices to adjacent
pairs of vertices in G. Therefore, there are potentially more vertices located in
proximity region that should be empty, creating more instances for the proximity
forces and stress to improve the shape-based metrics.

Furthermore, the best improvement is achieved by ShSM over SM on QGG,
significantly higher than the improvement on QRNG and the improvements of
ShFR over FR. Specifically, larger improvements are obtained on QGG than
QRNG on scale-free and real-world benchmark graphs by ShSM . Since the prox-
imity region of RNG (i.e., lens at points u and v) is larger than the proximity
region of GG (i.e., disk with uv as diameter), when applying proximity stress, it
is harder to push all non-adjacent vertices out of the proximity region of RNG.
In addition, the tendency for ShSM to “open up” collapsed faces compared to
ShFR may have led to the better improvements obtained by ShSM .

6 Conclusion and Future Work

In this paper, we present the first study for the shape-faithful drawings of gen-
eral graphs. We first evaluate the shape-faithfulness of existing graph layouts
and examine the properties of good shape-faithful drawings. In general, tsNET
obtains the highest shape-faithfulness on medium-to-large graphs.

We then present ShFR and ShSM , algorithms for shape-faithful drawings
of general graphs, based on force-directed and stress-based layouts, introducing
new proximity forces/stress. Extensive experiments show that ShFR and ShSM
achieve significant improvement over FR and SM , on average, 12% and 35%
higher shape-based metrics respectively. Notably, ShSM obtains a 70% average
improvement on QGG over SM for scale-free graphs.

Future work includes shape-faithful layouts based on various other layouts.
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Appendix A Data Sets

Table 7. Data set details for layout comparison experiments. Note that while the mesh
graphs we use do not fall under known proximity drawability characterizations, they
can be drawn as RNG by drawing each 3-cycle as an equilateral triangle.

Name RNG-drawable GG-drawable Weak GG-drawable Avg. density

Tree (max deg. 5) Y N Y 0.99

Tree (non-forbidden max deg. 4) Y Y Y 0.99

Max. outerplanar Y Y Y 2.01

Biconn. outerplanar Y Y Y 1.40

1-conn. outerplanar N N Y 1.50

L-AUG N N N 1.01

F-AUG N N N 1.01

Mesh N* N N 2.85

Table 8. Benchmark data set details for ShFR and ShSM experiments

Name |V | |E| density

as19990606 5188 9930 1.91

migrations lcc 6025 9378 1.56

netscience 379 914 2.41

oflights lcc 2905 15645 5.39

tvcg 3213 10140 3.16

us powergrid 4941 6594 1.33

yeastppi lcc 2224 6609 2.97

1138 bus 1138 2596 2.28

add32 4960 14422 2.91

eva 4475 4652 1.04

G 4 2075 4769 2.30



Appendix B Graph Layout Comparison Results

(a) Small (b) Medium (c) Large

Fig. 7. Average QGG for strong GG-drawable trees. The pattern in best-performing
drawing algorithms are similar with RNG-drawable trees on medium and large trees.
Even highest-performing layouts are still far from ideal (QGG = 1).

(a) Small (b) Medium (c) Large

Fig. 8. Average QGG for maximum outerplanar graphs. The ordering between layouts
is mostly the same as with QRNG, with tsNET and CK obtaining the best QGG on
medium and large graphs.



Appendix C ShFR Algorithm

Before explaining our algorithm, we first provide an explanation of force-directed
methods. Force-directed algorithms model a graph as a system of bodies with two
types of forces acting between them: a repulsion force for each pair of vertices,
and an attraction force for each edge.

For two vertices u, v, the x-displacement x′v of v induced by the repulsion
force exerted by u on v can be computed as xv−xu

||Xv−Xu||2 fl
2, where xv is the x-

coordinate of v, ||Xv − Xu|| is the Euclidean distance between u and v, l is a
parameter representing natural spring length (i.e., the target edge length), and
f is a parameter for spring stiffness.

For two adjacent vertices u, v (i.e., edge (u, v) in G), the x-displacement
of v induced by the attraction force exerted by u on v can be computed as
(xu − xv)(||Xv −Xu||)l−1.

Algorithm 1 describes the details of ShFR using the pseudo code.

Appendix D ShSM Algorithm

Before explaining our algorithm, we first explain stress-based algorithms using
Stress Majorization (SM), a popular stress-based algorithm. Stress-based algo-
rithms aim to minimize the stress in a drawing, where low stress means that
the Euclidean distances in the drawing are proportional to the graph-theoretic
distances in a graph.

For two vertices v and u, the stress between the two vertices is defined by
how proportional the Euclidean distances between the two vertices in D is to the
length of the shortest path between the two vertices in G. More precisely, the
x-displacement x′v of v induced by the stress between v and u can be computed
as wuv(xu)+duv(xv−xu)/||Xv−Xu||), where duv is the graph-theoretic distance
between v and u, and wuv is a weight for the pair u and v, defined as (duv)−2

for SM .

Algorithm 2 describes the details of ShSM using the pseudo code.



Algorithm 1: ShFR

Input: Graph G = (V,E), # of iterations k
1 repeat k times
2 // Initialize displacement
3 for u ∈ V do
4 x′u, y

′
u = 0;

5 end
6 // FR repulsion force
7 for u ∈ V do
8 for v ∈ V, v 6= u do
9 x′u+ = xv−xu

||Xv−Xu||2
fl2;

10 y′u+ = xv−xu
||Xv−Xu||2

fl2;

11 end

12 end
13 // FR attraction force
14 for e = (u, v) ∈ E do
15 x′u− = (xu − xv)(||Xv −Xu||)/l;
16 y′u− = (yu − yv)(||Xv −Xu||)/l;
17 x′v+ = (xu − xv)(||Xv −Xu||)/l;
18 y′v+ = (yu − yv)(||Xv −Xu||)/l;
19 end
20 // Update coordinates of vertices in V according to the displacement
21 for u ∈ V do
22 xu+ = x′u;
23 yu+ = y′u;

24 end
25 Compute proximity graph S = (V,E′);
26 // Initialize displacement
27 for u ∈ V do
28 x′u, y

′
u = 0;

29 end
30 // ShFR proximity forces
31 for e = (u, v) ∈ E \ E′ do
32 m: mid-point of u and v;
33 // ShFR proximity repulsion force
34 for t ∈ V where (u, t) ∈ E′ \ E or (v, t) ∈ E′ \ E do

35 x′t+ = xt−xm
||Xt−Xm||2

fl2 ||Xv−Xu||
||Xt−Xm|| ;

36 y′t+ = yt−ym
||Xt−Xm||2

fl2 ||Xv−Xu||
||Xt−Xm|| ;

37 end
38 // ShFR proximity attraction force
39 x′u− = (xu − xv)(||Xv −Xu||)/2l;
40 y′u− = (yu − yv)(||Xv −Xu||)/2l;
41 x′v+ = (xu − xv)(||Xv −Xu||)/2l;
42 y′v+ = (yu − yv)(||Xv −Xu||)/2l;

43 end
44 // Update coordinates of vertices in V according to the displacement
45 for u ∈ V do
46 xu+ = x′u;
47 yu+ = y′u;

48 end

49 end



Algorithm 2: ShSM

Input: Graph G = (V,E), # of iterations k
1 duv ← ShortestPaths(G);
2 Compute weights wuv;
3 Compute initial layout D of G using PivotMDS;
4 repeat k times
5 // SM stress
6 for u ∈ V do
7 // Initialize weight sum and displacement
8 Wu = 0;
9 x′u, y

′
u = 0;

10 // Stress minimization computation
11 for v ∈ V, v 6= u do
12 x′u+ = wuv(xu) + duv(xv − xu)/||Xv −Xu||);
13 y′u+ = wuv(yu) + duv(yv − yu)/||Xv −Xu||);
14 Wu+ = wuv;

15 end
16 // Update coordinates of vertices in V according to the displacement
17 xu = x′u/Wu;
18 yu = y′u/Wu;

19 end
20 Compute proximity graph S = (V,E′);
21 // Initialize weight sum and displacement
22 for u ∈ V do
23 Wu = 0;
24 x′u, y

′
u = 0;

25 end
26 // ShSM proximity stress
27 for e = (u, v) ∈ E \ E′ do
28 m: mid-point of u and v;
29 // ShSM proximity repulsion stress
30 for t ∈ V where (u, t) ∈ E′ \ E or (v, t) ∈ E′ \ E do
31 x′t+ = wuv(xm) + duv(xm − xt)||Xv −Xu||/||Xt −Xm||);
32 y′t+ = wuv(ym) + duv(ym − yt)||Xv −Xu||/||Xt −Xm||);
33 Wt+ = wuv;

34 end
35 // ShSM proximity attraction stress

36 x′u+ = (wuv)k(xu) + duv(xv − xu)/||Xv −Xu||);
37 y′u+ = (wuv)k(yu) + duv(yv − yu)/||Xv −Xu||);
38 Wu+ = (wuv)k;

39 x′v+ = (wuv)k(xv) + duv(xu − xv)/||Xv −Xu||);
40 y′v+ = (wuv)k(yv) + duv(yu − yv)/||Xv −Xu||);
41 Wv+ = (wuv)k;

42 end
43 // Update coordinates of vertices in V according to the displacement
44 for u ∈ V do
45 xu = x′u/Wu;
46 yu = y′u/Wu;

47 end

48 end



Appendix E ShFR and ShSM : Visual Comparison

Table 9. Visual comparison of FR and ShFR, SM and ShSM on strong proximity
drawable graph classes and synthetic scale-free graphs. ShFR manages to untangle
strong proximity drawable graphs better than FR. Meanwhile, ShSM manages to
“open up” the faces collapsed by SM and highlights dense areas in scale-free graphs
better.

FR ShFR FR ShFR FR ShFR

Max. outerplanar Biconn. outerplanar Tree

Scale-free (d = 2) Scale-free (d = 3) Scale-free (d = 5)

SM ShSM SM ShSM SM ShSM

Max. outerplanar Biconn. outerplanar Tree

Scale-free (d = 2) Scale-free (d = 3) Scale-free (d = 5)
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