Skip to main content

Benchmarking Variable-Stiffness Grippers

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 17 (IAS 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 577))

Included in the following conference series:

  • 965 Accesses

Abstract

Designs for grippers using variable-stiffness principles have become common in recent years. Researchers have developed various tests and setups to measure and validate the properties of their designs. However, there are no clear standards or benchmarks to analyse, categorise and compare this type of grippers. This paper proposes a set of benchmarks to evaluate and categorise variable-stiffness grippers. After reviewing the tests commonly applied to evaluate existing variable-stiffness and generic grippers, we propose four tests to measure different properties of a gripper. The tests are independent of one another and allow to classify each gripper in a three-category taxonomy. In order to validate the benchmark tests, three simple variable-stiffness grippers have been built and analysed with the benchmark. The results show that the grippers can be easily analysed with our benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodić, A., Miloradović, B., Popić, S., Spasojević, S., Karan, B.: Development of modular compliant anthropomorphic robot hand. In: Mechanisms and Machine Science, vol. 16, pp. 205–219. Springer, Cham (2014)

    Google Scholar 

  2. Rus, D., Tolley, M.T.: Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  3. Pfeifer, R., Lungarella, M., Iida, F.: The challenges ahead for bio-inspired “soft” robotics. Commun. ACM 55(11), 76 (2012)

    Google Scholar 

  4. Rich, S.I., Wood, R.J., Majidi, C.: Untethered soft robotics. Nat. Electron. 1(2), 102–112 (2018)

    Article  Google Scholar 

  5. Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment, and biologically inspired robotics (2007)

    Google Scholar 

  6. Mizushima, K., Oku, T., Suzuki, Y., Tsuji, T., Watanabe, T.: Multi-fingered robotic hand based on hybrid mechanism of tendon-driven and jamming transition. In: 2018 IEEE International Conference on Soft Robotics, RoboSoft 2018, Apr 2018, pp. 376–381. IEEE (2018)

    Google Scholar 

  7. Hao, Y., Wang, T., Fang, X., Yang, K., Mao, L., Guan, J., Wen, L.: A variable stiffness soft robotic gripper with low-melting-point alloy. In: Chinese Control Conference, CCC, July 2017, pp. 6781–6786. IEEE (2017)

    Google Scholar 

  8. Yang, Y., Chen, Y.: 3D printing of smart materials for robotics with variable stiffness and position feedback. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, July 2017, pp. 418–423. IEEE (2017)

    Google Scholar 

  9. Memar, A.H., Mastronarde, N., Esfahani, E.T.: Design of a novel variable stiffness gripper using permanent magnets. In: Proceedings - IEEE International Conference on Robotics and Automation, May 2017, pp. 2818–2823. IEEE (2017)

    Google Scholar 

  10. Firouzeh, A., Paik, J.: An under-actuated origami gripper with adjustable stiffness joints for multiple grasp modes. Smart Mater. Struct. 26(5), 055035 (2017)

    Google Scholar 

  11. Manti, M., Cacucciolo, V., Cianchetti, M.: Stiffening in soft robotics: a review of the state of the art. IEEE Robot. Autom. Mag. 23(3), 93–106 (2016)

    Google Scholar 

  12. Cardin-Catalan, D., del Pobil, A.P., Morales, A.: Analysis of variable-stiffness soft finger joints. Adv. Intell. Syst. Comput. 867, 334–345 (2019)

    Google Scholar 

  13. Shahid, Z., Glatman, A.L., Ryu, S.C.: Design of a soft composite finger with adjustable joint stiffness. Soft Robot. 1–11 (2019)

    Google Scholar 

  14. Firouzeh, A., Paik, J.: Grasp mode and compliance control of an underactuated origami gripper using adjustable stiffness joints. IEEE/ASME Trans. Mechatron. 22(5), 2165–2173 (2017)

    Article  Google Scholar 

  15. Li, J., Sun, M., Wu, Z., Yin, H.: Design, analysis, and grasping experiments of a novel soft hand: hybrid actuator using shape memory alloy actuators, motors, and electromagnets. Soft Robot. 7(3), 396–407 (2020). PMID: 31905330

    Article  Google Scholar 

  16. Amend, J.R., Brown, E., Rodenberg, N., Jaeger, H.M., Lipson, H.: A positive pressure universal gripper based on the jamming of granular material. IEEE Trans. Robot. 28(2), 341–350 (2012)

    Google Scholar 

  17. Chen, Q., Wei, Y., Ren, T., Li, Y., Yang, Y., Chen, Y., Yan, C.: A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming. Soft Robot. 3(3), 134–143 (2016)

    Article  Google Scholar 

  18. Yang, Y., Chen, Y., Wei, Y., Li, Y.: Novel design and three-dimensional printing of variable stiffness robotic grippers. J. Mech. Robot. 8(6), 061010 (2016)

    Article  Google Scholar 

  19. Ham, K.B., Han, J., Park, Y.J.: Soft gripper using variable stiffness mechanism and its application. Int. J. Precis. Eng. Manuf. 19(4), 487–494 (2018)

    Article  Google Scholar 

  20. Li, X., Chen, W., Lin, W., Low, K.H.: A variable stiffness robotic gripper based on structure-controlled principle. IEEE Trans. Autom. Sci. Eng. 15(3), 1104–1113 (2018)

    Article  Google Scholar 

  21. Fei, Y., Wang, J., Pang, W.: A novel fabric-based versatile and stiffness-tunable soft gripper integrating soft pneumatic fingers and wrist. Soft Robot. 6(1), 29–31 (2018)

    Google Scholar 

  22. Jiang, Y., Chen, D., Liu, C., Li, J.: Chain-like granular jamming: a novel stiffness-programmable mechanism for soft robotics. Soft Robot. 1–15 (2018)

    Google Scholar 

  23. Ge, Q., Gu, G., Wang, D., Zhang, B., Zhang, N., Yuan, C., Hingorani, H., Ding, N., Zhang, Y.F.: Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Adv. Funct. Mater. 1806698, 1806698 (2019)

    Google Scholar 

  24. Calli, B., Walsman, A., Singh, A., Srinivasa, S., Abbeel, P., Dollar, A.M.: Benchmarking in manipulation research: using the Yale-CMU-Berkeley object and model set. IEEE Robot. Autom. Mag. 22(3), 36–52 (2015)

    Google Scholar 

  25. Falco, J., Wyk, K.V., Messina, E.: Performance Metrics and Test Methods for Robotic Hands

    Google Scholar 

  26. Cardin-Catalan, D., Ceppetelli, S., del Pobil, A.P., Morales, A.: Design and analysis of a variable-stiffness robotic gripper. Alex. Eng. J. 61(2), 1235–1248 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This paper describes research conducted at UJI Robotic Intelligence Laboratory. Support for this laboratory is provided in part by Universidad Jaume I (UJI-B2021-42, UJI-B2021-27), by Generalitat Valenciana (PROMETEO/2020/034) and by Ministerio de Ciencia y Teconologia (PDC2021-121011-I00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cardin-Catalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cardin-Catalan, D., del Pobil, A.P., Morales, A. (2023). Benchmarking Variable-Stiffness Grippers. In: Petrovic, I., Menegatti, E., Marković, I. (eds) Intelligent Autonomous Systems 17. IAS 2022. Lecture Notes in Networks and Systems, vol 577. Springer, Cham. https://doi.org/10.1007/978-3-031-22216-0_4

Download citation

Publish with us

Policies and ethics