Skip to main content

On Security of Fuzzy Commitment Scheme for Biometric Authentication

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2022)

Abstract

Biometric security is a prominent research area with growing privacy and security concerns related to biometric data, generally known as biometric templates. Among the recently proposed biometric template protection schemes, fuzzy commitment is the most popular and reliable. It uses error correcting codes to deal with the significant number of bit errors present in the biometric templates. The high error correcting capability of the underlying error correcting codes is crucial to achieving the desired recognition performance in the biometric system. In general, it is satisfied by padding the input biometric template with some additional bits. The fixed padding approaches proposed in the literature have security vulnerabilities that could disclose the user’s biometric data to the attacker, leading to an impersonation attack. We propose a user-specific, random padding scheme that preserves the recognition performance of the system while it prevents the impersonation attack. The empirical results show that the proposed scheme provides 3 times better recognition performance on the IIT Delhi iris database than the baseline, unprotected systems. Through security analysis, we show that the attack complexity of our proposed work is \(2^{k}\), where k is the length of the secret message used to generate codeword, with \(k \ge 128\) bits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.eccpage.com/bch3.c.

References

  1. Al-Assam, H., Jassim, S.: Security evaluation of biometric keys. Cmput. Secur. 31(2), 151–163 (2012)

    Google Scholar 

  2. Berrou, C., Glavieux, A., Thitimajshima, P.: Near shannon limit error-correcting coding and decoding: Turbo-codes. 1. In: Proceedings of ICC’93-IEEE International Conference on Communications, vol. 2, pp. 1064–1070. IEEE (1993)

    Google Scholar 

  3. Bose, R.C., Ray-Chaudhuri, D.K.: On a class of error correcting binary group codes. Inf. Control 3(1), 68–79 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang, D., Garg, S., Ghosh, M., Hasan, M.: Biofuse: a framework for multi-biometric fusion on biocryptosystem level. Inf. Sci. 546, 481–511 (2021)

    Article  MathSciNet  Google Scholar 

  5. Chang, D., Garg, S., Hasan, M., Mishra, S.: Cancelable multi-biometric approach using fuzzy extractor and novel bit-wise encryption. IEEE Trans. Inf. Forensics Secur. 15, 3152–3167 (2020)

    Article  Google Scholar 

  6. Chauhan, S., Sharma, A.: Improved fuzzy commitment scheme. Int. J. Inf. Technol. 14, 1321–1331(2019)

    Google Scholar 

  7. Cullen, C.G.: Matrices and Linear Transformations. Courier Corporation (2012)

    Google Scholar 

  8. Daugman, J.: 600 million citizens of India are now enrolled with biometric id. SPIE Newsroom 7 (2014)

    Google Scholar 

  9. Dayal Mohan, D., Sankaran, N., Tulyakov, S., Setlur, S., Govindaraju, V.: Significant feature based representation for template protection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  10. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_31

    Chapter  Google Scholar 

  11. Drozdowski, P., Garg, S., Rathgeb, C., Gomez-Barrcro, M., Chang, D., Busch, C.: Privacy-preserving indexing of iris-codes with cancelable bloom filter-based search structures. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 2360–2364. IEEE (2018)

    Google Scholar 

  12. Gao, S.: A new algorithm for decoding reed-solomon codes. In: In: Bhargava, V.K., Poor, H.V., Tarokh, V., Yoon, S. (eds.) Communications, Information and Network Security, pp. 55–68. Springer, Boston (2003). https://doi.org/10.1007/978-1-4757-3789-9_5

  13. Gomez-Barrero, M., Maiorana, E., Galbally, J., Campisi, P., Fierrez, J.: Multi-biometric template protection based on homomorphic encryption. Pattern Recogn. 67, 149–163 (2017)

    Article  Google Scholar 

  14. Gomez-Barrero, M., Rathgeb, C., Galbally, J., Busch, C., Fierrez, J.: Unlinkable and irreversible biometric template protection based on bloom filters. Inf. Sci. 370, 18–32 (2016)

    Article  MathSciNet  Google Scholar 

  15. Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively. IEEE Trans. Comput. 55(9), 1081–1088 (2006)

    Article  Google Scholar 

  16. Hoang, T., Choi, D., Nguyen, T.: Gait authentication on mobile phone using biometric cryptosystem and fuzzy commitment scheme. Int. J. Inf. Secur. 14(6), 549–560 (2015). https://doi.org/10.1007/s10207-015-0273-1

    Article  Google Scholar 

  17. Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: The best bits in an iris code. IEEE Trans. Pattern Anal. Mach. Intell. 31(6), 964–973 (2008)

    Article  Google Scholar 

  18. Jain, A.K., Nandakumar, K., Nagar, A.: Biometric template security. EURASIP J. Adv. Signal Process. 2008, 113 (2008)

    Article  Google Scholar 

  19. Juels, A., Sudan, M.: A fuzzy vault scheme. In: Proceedings of IEEE International Symposium on Information Theory, 2002, p. 408. IEEE (2002)

    Google Scholar 

  20. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Proceedings of the 6th ACM conference on Computer and Cmmunications Security, pp. 28–36. ACM (1999)

    Google Scholar 

  21. Kanade, S., Camara, D., Krichen, E., Petrovska-Delacrétaz, D., Dorizzi, B.: Three factor scheme for biometric-based cryptographic key regeneration using iris. In: Biometrics Symposium, 2008. BSYM 2008, pp. 59–64. IEEE (2008)

    Google Scholar 

  22. Kanade, S., Camara, D., Petrovska-Delacrtaz, D., Dorizzi, B.: Application of biometrics to obtain high entropy cryptographic keys. World Acad. Sci. Eng. Tech 52, 330 (2009)

    Google Scholar 

  23. Kanade, S., Petrovska-Delacrétaz, D., Dorizzi, B.: Cancelable iris biometrics and using error correcting codes to reduce variability in biometric data. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 120–127. IEEE (2009)

    Google Scholar 

  24. Kanade, S., Petrovska-Delacrétaz, D., Dorizzi, B.: Multi-biometrics based cryptographic key regeneration scheme. In: 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–7. IEEE (2009)

    Google Scholar 

  25. Kanade, S.G., Petrovska-Delacrétaz, D., Dorizzi, B.: Enhancing information security and privacy by combining biometrics with cryptography. Synth. Lect. Inf. Sec. Privacy Trust 3(1), 1–140 (2012)

    Google Scholar 

  26. Keller, D., Osadchy, M., Dunkelman, O.: Fuzzy commitments offer insufficient protection to biometric templates produced by deep learning. arXiv preprint arXiv:2012.13293 (2020)

  27. Kumar, A., Passi, A.: Comparison and combination of iris matchers for reliable personal authentication. Pattern Recogn. 43(3), 1016–1026 (2010)

    Article  MATH  Google Scholar 

  28. Li, P., Yang, X., Qiao, H., Cao, K., Liu, E., Tian, J.: An effective biometric cryptosystem combining fingerprints with error correction codes. Expert Syst. Appl. 39(7), 6562–6574 (2012)

    Article  Google Scholar 

  29. Lin, S., Costello, D.J.: Error Control Coding. Prentice Hall, Englewood Cliffs (2001)

    Google Scholar 

  30. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, vol. 16. Elsevier, New York (1977)

    Google Scholar 

  31. Mai, G., Cao, K., Lan, X., Yuen, P.C.: Secureface: face template protection. IEEE Trans. Inf. Forensics Secur. 16, 262–277 (2020)

    Article  Google Scholar 

  32. Malek, M.: Hadamard Codes. California State University, p. 112 (2018)

    Google Scholar 

  33. Masek, L., et al.: Recognition of human iris patterns for biometric identification. Ph.D. thesis, Citeseer (2003)

    Google Scholar 

  34. Nandakumar, K., Jain, A.K.: Biometric template protection: Bridging the performance gap between theory and practice. IEEE Signal Process. Mag. 32(5), 88–100 (2015)

    Article  Google Scholar 

  35. NL, F.: Uk," comparison bose-chaudhuri-hocquenghem bch and reed solomon. CCITT SGXV, Doc.# 476, Working Party XV/4, Specialists Group on Coding for Visual Telephony (2004)

    Google Scholar 

  36. Othman, N., Dorizzi, B., Garcia-Salicetti, S.: OSIRIS: an open source iris recognition software. Pattern Recogn. Lett. 82, 124–131 (2016)

    Article  Google Scholar 

  37. Ratha, N.K., Connell, J.H., Bolle, R.M.: Enhancing security and privacy in biometrics-based authentication systems. IBM Syst. J. 40(3), 614–634 (2001)

    Article  Google Scholar 

  38. Rathge, C., Uhl, A., Wild, P.: Reliability-balanced feature level fusion for fuzzy commitment scheme. In: 2011 International Joint Conference on Biometrics (IJCB), pp. 1–7. IEEE (2011)

    Google Scholar 

  39. Rathgeb, C., Breitinger, F., Busch, C.: Alignment-free cancelable iris biometric templates based on adaptive bloom filters. In: 2013 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2013)

    Google Scholar 

  40. Rathgeb, C., Uhl, A.: The state-of-the-art in iris biometric cryptosystems. In: State of the Art in Biometrics, pp. 179–202 (2011)

    Google Scholar 

  41. Rathgeb, C., Uhl, A., Wild, P., Hofbauer, H.: Design decisions for an iris recognition SDK. In: Bowyer, K.W., Burge, M.J. (eds.) Handbook of Iris Recognition. ACVPR, pp. 359–396. Springer, London (2016). https://doi.org/10.1007/978-1-4471-6784-6_16

    Chapter  Google Scholar 

  42. Stoianov, A.: Security of error correcting code for biometric encryption. In: 2010 Eighth Annual International Conference on Privacy Security and Trust (PST), pp. 231–235. IEEE (2010)

    Google Scholar 

  43. Talreja, V., Valenti, M.C., Nasrabadi, N.M.: Zero-shot deep hashing and neural network based error correction for face template protection. In: 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS), pp. 1–10. IEEE (2019)

    Google Scholar 

  44. Teoh, A.B.J., Kim, J.: Error correction codes for biometric cryptosystem: an overview. Inf. Commun. Mag. 32(6), 39–49 (2015)

    Google Scholar 

  45. Zhou, K., Ren, J.: PassBio: privacy-preserving user-centric biometric authentication. IEEE Trans. Inf. Forensics Secur. 13(12), 3050–3063 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surabhi Garg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chang, D., Garg, S., Hasan, M., Mishra, S. (2022). On Security of Fuzzy Commitment Scheme for Biometric Authentication. In: Nguyen, K., Yang, G., Guo, F., Susilo, W. (eds) Information Security and Privacy. ACISP 2022. Lecture Notes in Computer Science, vol 13494. Springer, Cham. https://doi.org/10.1007/978-3-031-22301-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22301-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22300-6

  • Online ISBN: 978-3-031-22301-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics