Skip to main content

DeChain: A Blockchain Framework Enhancing Decentralization via Sharding

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13494))

Included in the following conference series:

Abstract

In a blockchain system, full nodes store all the history data generated by the whole network. As time goes by, the increasing data will place a heavy burden on the full nodes. Rational nodes may discard history data, which results in the decrease of the number of full nodes. Moreover, huge storage requirement prevents storage-constrained users from participating in the network. These factors weaken decentralization and are harmful to the whole blockchain network. In this paper, we propose a new shard-based blockchain framework called DeChain which distributes the blockchain database into different nodes in protocol level. Specifically, we design a new mechanism to shard the UTXOs into specific nodes and set special rules for transaction generation. Each node in DeChain is in charge of the verification of some specified transactions. We propose an RSA accumulator-based method to support inter-shards verification of transactions. With this framework, users can participate in the consensus of the whole network by only maintaining a small portion of blockchain database. This greatly reduces the storage burden and enhances the decentralization of blockchain network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ultimate blockchain compression. https://bitcointalk.org/index.php?topic=88208

  2. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7_24

    Chapter  Google Scholar 

  3. Blockchain charts: Bitcoin block size. https://blockchain.info/charts/blocks-size/

  4. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 757–788. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_25

    Chapter  Google Scholar 

  5. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accumulators with applications to IOPs and stateless blockchains. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 561–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_20

    Chapter  Google Scholar 

  6. Bonneau, J., Meckler, I., Rao, V., Shapiro, E.: Coda: decentralized cryptocurrency at scale. IACR Cryptol. ePrint Arch. p. 352 (2020)

    Google Scholar 

  7. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: Flyclient: super-light clients for cryptocurrencies. In: IEEE Symposium on Security and Privacy, SP. pp. 928–946. IEEE (2020)

    Google Scholar 

  8. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_5

    Chapter  Google Scholar 

  9. Chen, H., Wang, Y.: Minichain: a lightweight protocol to combat the UTXO growth in public blockchain. J. Parall. Distrib. Comput. 143, 67–76 (2020)

    Article  Google Scholar 

  10. Chepurnoy, A., Larangeira, M., Ojiganov, A.: Rollerchain, a blockchain with safely pruneable full blocks (2016)

    Google Scholar 

  11. Chepurnoy, A., Papamanthou, C., Zhang, Y.: Edrax: a cryptocurrency with stateless transaction validation. IACR Cryptol. ePrint Arch, p. 968 (2018)

    Google Scholar 

  12. Dahlberg, R., Pulls, T., Peeters, R.: Efficient sparse merkle trees - caching strategies and secure (non-)membership proofs. In: Secure IT Systems - 21st Nordic Conference, vol. 10014, pp. 199–215 (2016)

    Google Scholar 

  13. Dryja, T.: Utreexo: a dynamic hash-based accumulator optimized for the bitcoin UTXO set. IACR Cryptol. ePrint Arch, p. 611 (2019)

    Google Scholar 

  14. Fouque, P., Tibouchi, M.: Close to uniform prime number generation with fewer random bits. IEEE Trans. Inf. Theory 65(2), 1307–1317 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bruce, J.D.: The mini-blockchain scheme (2014). http://cryptonite.info/files/mbc-scheme-rev3.pdf

  16. Kiayias, A., Miller, A., Zindros, D.: Non-interactive proofs of proof-of-work. In: Bonneau, J., Heninger, N. (eds.) FC 2020. LNCS, vol. 12059, pp. 505–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51280-4_27

    Chapter  Google Scholar 

  17. Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., Ford, B.: Omniledger: a secure, scale-out, decentralized ledger via sharding. In: IEEE Symposium on Security and Privacy, SP. pp. 583–598 (2018)

    Google Scholar 

  18. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs. In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5_17

    Chapter  Google Scholar 

  19. Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., Saxena, P.: A secure sharding protocol for open blockchains. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 17–30. ACM (2016)

    Google Scholar 

  20. Matzutt, R., Kalde, B., Pennekamp, J., Drichel, A., Henze, M., Wehrle, K.: Coinprune: Shrinking bitcoin’s blockchain retrospectively. IEEE Trans. Netw. Serv. Manag. 18(3), 3064–3078 (2021)

    Article  Google Scholar 

  21. Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_32

    Chapter  Google Scholar 

  22. Monero Foundation: Monero whitepaper (2014). https://cryptoverze.com/monero-whitepaper/

  23. Newman, D.J.: Simple analytic proof of the prime number theorem. Am. Math. Monthly 87, 693–696 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theor. 12(1), 128–138 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). http://bitcoin.org/bitcoin.pdf

  26. Vbuterin: the stateless client concept. https://ethresear.ch/t/the-stateless-client-concept/172.2017

  27. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014). http://gavwood.com/Paper.pdf

  28. Yu, H., Nikolic, I., Hou, R., Saxena, P.: OHIE: blockchain scaling made simple. In: IEEE Symposium on Security and Privacy, SP. pp. 90–105 (2020)

    Google Scholar 

  29. Zamani, M., Movahedi, M., Raykova, M.: Rapidchain: Scaling blockchain via full sharding. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS. pp. 931–948. ACM (2018)

    Google Scholar 

  30. Zhang, W., Yu, J., He, Q., Guan, N.: TICK: tiny client for blockchains. IACR Cryptol. ePrint Arch, p. 792 (2019)

    Google Scholar 

Download references

Acknowledgements

We would like to thank all the anonymous reviewers for their constructive and detailed comments. This work was supported by the National Natural Science Foundation of China (No. 62072305), the Key (Keygrant) Project of Chinese Ministry of Education (No. 2020KJ010201), and the Key Research and Development Plan of Shandong Province (No. 2021CXGC010105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, S., Liu, Z., Long, Y., Gu, D. (2022). DeChain: A Blockchain Framework Enhancing Decentralization via Sharding. In: Nguyen, K., Yang, G., Guo, F., Susilo, W. (eds) Information Security and Privacy. ACISP 2022. Lecture Notes in Computer Science, vol 13494. Springer, Cham. https://doi.org/10.1007/978-3-031-22301-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22301-3_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22300-6

  • Online ISBN: 978-3-031-22301-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics