Skip to main content

Deciding Program Properties via Complete Abstractions on Bounded Domains

  • Conference paper
  • First Online:
Static Analysis (SAS 2022)

Abstract

Abstract interpretation provides an over-approximation of program behaviours that is used to prove the absence of bugs. When the computed approximation in the chosen abstract domain is as precise as possible, we say the analysis is complete and false alarms cannot arise. Unfortunately for any non trivial abstract domain there is some program whose analysis is incomplete. In this paper we want to characterize the classes of complete programs on some non-trivial abstract domains for studying their expressiveness. To this aim we introduce the notion of bounded domains for posets with ascending chains of bounded length only. We show that any complete program on bounded domains can be rewritten in an equivalent canonical form without nontrivial loops. This result proves that program termination on the class of complete programs on bounded domain is decidable. Moreover, semantic equivalence between programs in the above class can be reduced to determining the equivalence of a set of guarded statements. We show how our approach can be applied to a quite large class of programs. Indeed, abstract domains defined on Boolean abstractions that are complete for the same functions can be composed by preserving boundedness and completeness also w.r.t. any expressible guard. This suggests that new complete bounded abstract domains can be tailored on the guards and functions appearing in the program. Their existence is sufficient to prove decidability of termination and program equivalence for such programs.

Research supported by MIUR PRIN Project 201784YSZ5 ASPRA–Analysis of Program Analyses. Partially funded by RYC-2016-20281, by ESF Investing in your future and by Madrid regional government as part of the program S2018/TCS-4339 co-funded by EIE Funds of the European Union.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Namely, the identical abstraction, making abstract and concrete semantics the same, and the top abstraction, making all programs equivalent by abstract semantics.

  2. 2.

    Note that this is different from establishing termination for all input in S, which should be addressed separately.

References

  1. Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian abstraction for model checking C programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 268–283. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_19

    Chapter  MATH  Google Scholar 

  2. Barringer, H.: A Survey of Verification Techniques for Parallel Programs. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-15239-3

    Book  MATH  Google Scholar 

  3. Bruni, R., Giacobazzi, R., Gori, R., Garcia-Contreras, I., Pavlovic, D.: Abstract extensionality: on the properties of incomplete abstract interpretations. Proc. ACM on Program. Lang. 4(POPL), 1–28 (2019)

    Google Scholar 

  4. Bruni, R., Giacobazzi, R., Gori, R., Ranzato, F.: A logic for locally complete abstract interpretations. In: Proceedings of LICS 2021, 36th Annual ACM/IEEE Symposium on Logic in Computer Science, pp. 1–13. IEEE (2021). https://doi.org/10.1109/LICS52264.2021.9470608, distinguished paper

  5. Cousot, P.: Principles of Abstract Interpretation. MIT Press, Cambridge (2021)

    MATH  Google Scholar 

  6. Cousot, P.: Abstract interpretation based formal methods and future challenges. In: Wilhelm, R. (ed.) Informatics. LNCS, vol. 2000, pp. 138–156. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44577-3_10

    Chapter  Google Scholar 

  7. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of programming Languages, pp. 238–252 (1977)

    Google Scholar 

  8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp. 269–282 (1979)

    Google Scholar 

  9. Cousot, P., Cousot, R.: Basic concepts of abstract interpretation. In: Jacquart, R. (ed.) Building the Information Society. IIFIP, vol. 156, pp. 359–366. Springer, Boston, MA (2004). https://doi.org/10.1007/978-1-4020-8157-6_27

    Chapter  MATH  Google Scholar 

  10. Das, M., Lerner, S., Seigle, M.: ESP: path-sensitive program verification in polynomial time. In: Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation, pp. 57–68 (2002)

    Google Scholar 

  11. Dijkstra, E.W.: A Discipline Of programming. Series in Automatic Computation, Prentice-Hall, Hoboken (1976)

    Google Scholar 

  12. D’silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques for formal software verification. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27(7), 1165–1178 (2008)

    Article  Google Scholar 

  13. Giacobazzi, R., Ranzato, F., Scozzari., F.: Making abstract interpretation complete. J. ACM 47(2), 361–416 (2000). https://doi.org/10.1145/333979.333989

  14. Giacobazzi, R., Logozzo, F., Ranzato, F.: Analyzing program analyses. ACM SIGPLAN Not. 50(1), 261–273 (2015)

    Article  MATH  Google Scholar 

  15. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443 (1997). https://doi.org/10.1145/256167.256195

  16. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpretation. Found. Trends Program. Lang. 4(3–4), 120–372 (2017)

    Article  Google Scholar 

  17. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  18. Nelson, C.G.: Techniques for Program Verification. Stanford University, Stanford (1980)

    Google Scholar 

  19. Nielson, F., Nielson, H., Hankin, C.: Principles of Program Analysis. Springer, Cham (2010). https://doi.org/10.1007/978-3-662-03811-6

  20. Rice, H.G.: Classes of recursively enumerable sets and their decision problems. Trans. Am. Math. Soc. 74(2), 358–366 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rival, X., Yi, K.: Introduction to Static Analysis - An Abstract Interpretation Perspective. MIT Press, Cambridge (2020)

    Google Scholar 

  22. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. A correction. Proc. Lond. Math. Soc. 2(1), 544–546 (1938)

    Google Scholar 

  23. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proceedings of the First Symposium on Logic in Computer Science, pp. 322–331. IEEE Computer Society (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Manini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bruni, R., Gori, R., Manini, N. (2022). Deciding Program Properties via Complete Abstractions on Bounded Domains. In: Singh, G., Urban, C. (eds) Static Analysis. SAS 2022. Lecture Notes in Computer Science, vol 13790. Springer, Cham. https://doi.org/10.1007/978-3-031-22308-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22308-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22307-5

  • Online ISBN: 978-3-031-22308-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics