Abstract
An important theme in the research on attribute-based encryption (ABE) is minimizing the sizes of secret keys and ciphertexts. In this work, we present two new ABE schemes with constant-size secret keys, i.e., the key size is independent of the sizes of policies or attributes and dependent only on the security parameter \(\lambda \).
-
We construct the first key-policy ABE scheme for circuits with constant-size secret keys, \({|{\textsf{sk}}_f| = {\text {poly}}(\lambda )}\), which concretely consist of only three group elements. The previous state-of-the-art scheme by [Boneh et al., Eurocrypt ’14] has key size polynomial in the maximum depth d of the policy circuits, \({|{\textsf{sk}}_f| = {\text {poly}}(d,\lambda )}\). Our new scheme removes this dependency of key size on d while keeping the ciphertext size the same, which grows linearly in the attribute length and polynomially in the maximal depth, \({|{\textsf{ct}}_{{{\textbf{x}}}}| = |{{\textbf{x}}}|{\text {poly}}(d, \lambda )}\).
-
We present the first ciphertext-policy ABE scheme for Boolean formulae that simultaneously has constant-size keys and succinct ciphertexts of size independent of the policy formulae, namely, \({|{\textsf{sk}}_f| = {\text {poly}}(\lambda )}\) and \({|{\textsf{ct}}_{{{\textbf{x}}}}| = {\text {poly}}(|{{\textbf{x}}}|, \lambda )}\). Concretely, each secret key consists of only two group elements. Previous ciphertext-policy ABE schemes either have succinct ciphertexts but non-constant-size keys [Agrawal–Yamada, Eurocrypt ’20, Agrawal–Wichs–Yamada, TCC ’20], or constant-size keys but large ciphertexts that grow with the policy size as well as the attribute length. Our second construction is the first ABE scheme achieving double succinctness, where both keys and ciphertexts are smaller than the corresponding attributes and policies tied to them.
Our constructions feature new ways of combining lattices with pairing groups for building ABE and are proven selectively secure based on LWE and in the generic (pairing) group model. We further show that when replacing the LWE assumption with its adaptive variant introduced in [Quach–Wee–Wichs FOCS ’18], the constructions become adaptively secure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We always ignore polynomial factors in the security parameter.
- 2.
When working with lattices, it is more convenient to indicate authorization of decryption by zero, thus the negation of \(C({{\textbf{x}}})\).
- 3.
This truncation only introduces an exponentially small statistical error.
- 4.
It is stronger in that it is adaptive, but weaker in that the shares are not necessarily pseudorandom.
- 5.
We use \(f({{\textbf{x}}})=0\) to express authorization.
- 6.
There are \(2|{{\textbf{x}}}|+2\) shares, so the total share size is linear in the length of \({{\textbf{x}}}\).
References
Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_33
Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_12
Agrawal, S., Wichs, D., Yamada, S.: Optimal broadcast encryption from LWE and pairings in the standard model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 149–178. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_6
Agrawal, S., Yamada, S.: Optimal broadcast encryption from pairings and LWE. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 13–43. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_2
Attrapadung, N.: Dual system encryption framework in prime-order groups via computational pair encodings. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 591–623. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_20
Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_6
Attrapadung, N., Tomida, J.: Unbounded dynamic predicate compositions in ABE from standard assumptions. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 405–436. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_14
Beimel, A.: Secure schemes for secret sharing and key distribution. Ph.D. thesis, Technion-Israel Institute of Technology (1996)
Berkowitz, S.J.: On computing the determinant in small parallel time using a small number of processors. Inf. Process. Lett. 18(3), 147–150 (1984). https://doi.org/10.1016/0020-0190(84)90018-8
Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and Privacy, pp. 321–334. IEEE Computer Society Press (2007). https://doi.org/10.1109/SP.2007.11
Boneh, D., et al.: Fully key-homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_30
Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_16
Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10
Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_1
Buntrock, G., Damm, C., Hertrampf, U., Meinel, C.: Structure and importance of logspace-MOD class. Math. Syst. Theory 25(3), 223–237 (1992). https://doi.org/10.1007/BF01374526
Chen, Y.-H., Chung, K.-M., Liao, J.-J.: On the complexity of simulating auxiliary input. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 371–390. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_12
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: 54th FOCS, pp. 40–49. IEEE Computer Society Press (2013). https://doi.org/10.1109/FOCS.2013.13
Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–476. ACM Press (2013). https://doi.org/10.1145/2488608.2488667
Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_5
Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_30
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_11
Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for circuits. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 545–554. ACM Press (2013). https://doi.org/10.1145/2488608.2488677
Gorbunov, S., Vinayagamurthy, D.: Riding on asymmetry: efficient ABE for branching programs. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 550–574. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_23
Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM CCS 2006, pp. 89–98. ACM Press (2006). https://doi.org/10.1145/1180405.1180418. available as Cryptology ePrint Archive Report 2006/309
Jetchev, D., Pietrzak, K.: How to fake auxiliary input. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 566–590. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_24
Karchmer, M., Wigderson, A.: On span programs. In: Proceedings of Structures in Complexity Theory, pp. 102–111 (1993)
Kitagawa, F., Nishimaki, R., Tanaka, K., Yamakawa, T.: Adaptively secure and succinct functional encryption: improving security and efficiency, simultaneously. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 521–551. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_17
Kowalczyk, L., Wee, H.: Compact adaptively secure abe for \(\sf NC^1\) from k-Lin. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11476, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17653-2_1
Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_4
Lewko, A., Waters, B.: New proof methods for attribute-based encryption: achieving full security through selective techniques. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 180–198. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_12
Li, H., Lin, H., Luo, J.: ABE for circuits with constant-size secret keys and adaptive security. Cryptology ePrint Archive, Report 2022/659 (2022). https://eprint.iacr.org/2022/659
Lin, H., Luo, J.: Succinct and adaptively secure ABE for ABP from k-Lin. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 437–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_15
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica 7(1), 101–104 (1987). https://doi.org/10.1007/BF02579205
Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_11
Quach, W., Wee, H., Wichs, D.: Laconic function evaluation and applications. In: Thorup, M. (ed.) 59th FOCS, pp. 859–870. IEEE Computer Society Press (Oct 2018). https://doi.org/10.1109/FOCS.2018.00086
Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27
Takashima, K.: Expressive attribute-based encryption with constant-size ciphertexts from the decisional linear assumption. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 298–317. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_17
Tsabary, R.: Fully secure attribute-based encryption for t-CNF from LWE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11692, pp. 62–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_3
Waters, B.: A punctured programming approach to adaptively secure functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-7_33
Wee, H.: Attribute-hiding predicate encryption in bilinear groups, revisited. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 206–233. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_8
Yamada, S., Attrapadung, N., Hanaoka, G., Kunihiro, N.: A framework and compact constructions for non-monotonic attribute-based encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 275–292. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_16
Zhang, K., et al.: Practical and efficient attribute-based encryption with constant-size ciphertexts in outsourced verifiable computation. In: Chen, X., Wang, X., Huang, X. (eds.) ASIACCS 16, pp. 269–279. ACM Press (2016)
Acknowledgement
The authors were supported by NSF grants CNS-1528178, CNS-1929901, CNS-1936825 (CAREER), CNS-2026774, a Hellman Fellowship, a JP Morgan AI Research Award, the Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No. 2017-002 through Galois. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government. The authors thank the anonymous reviewers for their valuable comments
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, H., Lin, H., Luo, J. (2022). ABE for Circuits with Constant-Size Secret Keys and Adaptive Security. In: Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryptography. TCC 2022. Lecture Notes in Computer Science, vol 13747. Springer, Cham. https://doi.org/10.1007/978-3-031-22318-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-22318-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22317-4
Online ISBN: 978-3-031-22318-1
eBook Packages: Computer ScienceComputer Science (R0)