Skip to main content

Universally Composable \(\varSigma \)-protocols in the Global Random-Oracle Model

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2022)

Abstract

Numerous cryptographic applications require efficient non-interactive zero-knowledge proofs of knowledge (NIZKPoK) as a building block. Typically they rely on the Fiat-Shamir heuristic to do so, as security in the random-oracle model is considered good enough in practice. However, there is a troubling disconnect between the stand-alone security of such a protocol and its security as part of a larger, more complex system where several protocols may be running at the same time. Provable security in the general universal composition model (GUC model) of Canetti et al. is the best guarantee that nothing will go wrong when a system is part of a larger whole, even when all parties share a common random oracle. In this paper, we prove the minimal necessary properties of generally universally composable (GUC) NIZKPoK in any global random-oracle model, and show how to achieve efficient and GUC NIZKPoK in both the restricted programmable and restricted observable (non-programmable) global random-oracle models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For a full discussion of the subtle differences between observation and programming privileges in the global ROM(s), see Appendix A.2 in the full version [37].

  2. 2.

    As discussed by Camenish et al. [10], the challenger in such a hybrid experiment can make use of techniques like programming and rewinding that are otherwise ā€œillegalā€ for the simulator to employ in the GUC model.

References

  1. Adida, B.: Helios: web-based open-audit voting. In: Paul, C.. van Oorschot (eds.) Proceedings of the 17th USENIX Security Symposium, pp. 335–348 (2008)

    Google Scholar 

  2. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_16

    Chapter  Google Scholar 

  3. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Communications Security, pp. 62–73 (1993)

    Google Scholar 

  4. Benhamouda, F., Lepoint, T., Loss, J., Orru, M., Raykova, M.: On the (in) security of ROS. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 33–53. Springer (2021)

    Google Scholar 

  5. Blum, M., De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge. SIAM J. Comput. 20(6), 1084–1118 (1991)

    Google Scholar 

  6. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_31

    Chapter  MATH  Google Scholar 

  7. Bowe, S., Gabizon, A., Miers, I.: Scalable multi-party computation for ZK-snark parameters in the random beacon model. ePrint Archive (2017)

    Google Scholar 

  8. Brands, S.: Rethinking Public Key Infrastructure and Digital Certificates– Building in Privacy. PhD thesis, Eindhoven Inst. of Tech., The Netherlands (1999)

    Google Scholar 

  9. Camenisch, J., DamgĆ„rd, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_25

    Chapter  Google Scholar 

  10. Camenisch, J., Drijvers, M., Gagliardoni, T., Lehmann, A., Neven, G.: The wonderful world of global random oracles. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 280–312. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_11

    Chapter  Google Scholar 

  11. Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to win the clonewars: efficient periodic n-times anonymous authentication. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, pp. 201–210. ACM (2006)

    Google Scholar 

  12. Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_18

    Chapter  Google Scholar 

  13. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_7

    Chapter  Google Scholar 

  14. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_20

    Chapter  Google Scholar 

  15. Camenisch, J., Michels, M.: Proving in zero-knowledge that a number is the product of two safe primes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 107–122. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_8

    Chapter  MATH  Google Scholar 

  16. Camenisch, J., Michels, M.: Separability and efficiency for generic group signature schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 413–430. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_27

    Chapter  Google Scholar 

  17. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_8

    Chapter  Google Scholar 

  18. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052252

    Chapter  Google Scholar 

  19. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 136–145. IEEE (2001)

    Google Scholar 

  20. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4

    Chapter  Google Scholar 

  21. Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_2

    Chapter  Google Scholar 

  22. Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random oracle. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 597–608 (2014)

    Google Scholar 

  23. Cramer, R., DamgĆ„rd, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_18

    Chapter  Google Scholar 

  24. Cramer, R., DamgĆ„rd, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  25. Cramer, R., DamgĆ„rd, I., Xing, C., Yuan, C.: Amortized complexity of zero-knowledge proofs revisited: achieving linear soundness slack. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 479–500. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_17

    Chapter  Google Scholar 

  26. DamgƄrd, I.: On \(\sigma \)-protocols. University of Aarhus, Department of Computer Science (2002)

    Google Scholar 

  27. Drijvers, M., et al.: On the security of two-round multi-signatures. In: 2019 IEEE Symposium on Security and Privacy, pp. 1084–1101. IEEE (2019)

    Google Scholar 

  28. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

    Google Scholar 

  29. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  30. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with online extractors (2005). Manuscript. http://www.cryptoplexity.informatik.tu-darmstadt.de/media/crypt/publications_1/fischlinonline-extractor2005.pdf

  31. Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_10

    Chapter  Google Scholar 

  32. Fujisaki, E., Okamoto, T.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052225

    Chapter  Google Scholar 

  33. Goh, E.-J., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_25

    Chapter  Google Scholar 

  34. Katsumata, S.: A new simple technique to bootstrap various lattice zero-knowledge proofs to QROM secure NIZKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 580–610. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_20

    Chapter  Google Scholar 

  35. Kondi, Y., Shelat, A.: Improved straight-line extraction in the random oracle model with applications to signature aggregation. Cryptology ePrint Archive (2022)

    Google Scholar 

  36. Lipmaa, H.: Statistical zero-knowledge proofs from diophantine equations (2001). http://eprint.iacr.org/2001/086

  37. Lysyanskaya, A., Rosenbloom, L.N.: Universally composable sigma-protocols in the global random-oracle model. Cryptology ePrint Archive (2022)

    Google Scholar 

  38. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

    Chapter  Google Scholar 

  39. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round schnorr multi-signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_8

    Chapter  Google Scholar 

  40. Pass, R.: On deniability in the common reference string and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_19

    Chapter  Google Scholar 

  41. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9

    Chapter  Google Scholar 

  42. De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust non-interactive zero knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_33

    Chapter  Google Scholar 

  43. Unruh, D.: Non-interactive zero-knowledge proofs in the quantum random oracle model. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 755–784. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_25

    Chapter  MATH  Google Scholar 

  44. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_19

    Chapter  Google Scholar 

  45. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Wikstrƶm, D.: A commitment-consistent proof of a shuffle. In: Boyd, C., Ć”lez Nieto, J.M.G., (eds.), ACISP, pp. 407–421. Springer (2009)

    Google Scholar 

Download references

Acknowledgements

Many thanks to Yashvanth Kondi and abhi shelat for crucial security analysis of our original OR-protocol construction, and to Jack Doerner for insightful discussions about \(\mathcal {F}_{\texttt{NIZK}}\) that inspired our results in Sect. 3.5. This research was supported by NSF grant 2154170, and by grants from Meta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leah Namisa Rosenbloom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lysyanskaya, A., Rosenbloom, L.N. (2022). Universally Composable \(\varSigma \)-protocols in the Global Random-Oracle Model. In: Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryptography. TCC 2022. Lecture Notes in Computer Science, vol 13747. Springer, Cham. https://doi.org/10.1007/978-3-031-22318-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22318-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22317-4

  • Online ISBN: 978-3-031-22318-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics