Skip to main content

Relevance in the Computation of Non-monotonic Inferences

  • Conference paper
  • First Online:
Artificial Intelligence Research (SACAIR 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1734))

Included in the following conference series:

  • 330 Accesses

Abstract

Inductive inference operators generate non-monotonic inference relations on the basis of a set of conditionals. Examples include rational closure, system P and lexicographic inference. For most of these systems, inference has a high worst-case computational complexity. Recently, the notion of syntax splitting has been formulated, which allows restricting attention to subsets of conditionals relevant for a given query. In this paper, we define algorithms for inductive inference that take advantage of syntax splitting in order to obtain more efficient decision procedures. In particular, we show that relevance allows to use the modularity of knowledge base is a parameter that leads to tractable cases of inference for inductive inference operators such as lexicographic inference.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [24], conditionals can be assigned an additional rank \(\infty \) to allow for the modelling of strict conditionals. For simplicity, we do not consider strict conditionals, but the results here can be easily adapted to allow them.

References

  1. Britz, K., Casini, G., Meyer, T., Moodley, K., Sattler, U., Varzinczak, I.: Rational defeasible reasoning for description logics. University of Cape Town, Technical report (2018)

    Google Scholar 

  2. Britz, K., Casini, G., Meyer, T., Varzinczak, I.: A KLM perspective on defeasible reasoning for description logics. In: Lutz, C., Sattler, U., Tinelli, C., Turhan, A.-Y., Wolter, F. (eds.) Description Logic, Theory Combination, and All That. LNCS, vol. 11560, pp. 147–173. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22102-7_7

    Chapter  MATH  Google Scholar 

  3. Casini, G., Meyer, T., Varzinczak, I.: Taking defeasible entailment beyond rational closure. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 182–197. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0_12

    Chapter  Google Scholar 

  4. Casini, G., Straccia, U.: Lexicographic closure for defeasible description logics. In: Proceedings of Australasian Ontology Workshop, vol. 969, pp. 28–39 (2012)

    Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  6. Eiter, T., Lukasiewicz, T.: Default reasoning from conditional knowledge bases: complexity and tractable cases. Artif. Intell. 124(2), 169–241 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Finetti, B.: Theory of Probability, 2 vols. (1974)

    Google Scholar 

  8. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief revision, and causal modeling. AI 84(1–2), 57–112 (1996)

    Google Scholar 

  9. Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction and database problems. Comput. J. 51(3), 303–325 (2008)

    Article  Google Scholar 

  10. Haldimann, J., Beierle, C.: Inference with system W satisfies syntax splitting. arXiv preprint arXiv:2202.05511 (2022)

  11. Heyninck, J., Kern-Isberner, G., Meyer, T.: Lexicographic entailment, syntax splitting and the drowning problem. In: Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 2662–2668. International Joint Conferences on Artificial Intelligence Organization (2022). https://doi.org/10.24963/ijcai.2022/369

  12. Kern-Isberner, G.: Handling conditionals adequately in uncertain reasoning and belief revision. J. Appl. Non-Classical Logics 12(2), 215–237 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kern-Isberner, G., Beierle, C., Brewka, G.: Syntax splitting= relevance+ independence: new postulates for nonmonotonic reasoning from conditional belief bases. In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning, vol. 17, pp. 560–571 (2020)

    Google Scholar 

  14. Kern-Isberner, G., Brewka, G.: Strong syntax splitting for iterated belief revision. In: Sierra, C. (ed.) Proceedings International Joint Conference on Artificial Intelligence, IJCAI 2017, pp. 1131–1137. ijcai.org (2017)

    Google Scholar 

  15. Komo, C., Beierle, C.: Nonmonotonic reasoning from conditional knowledge bases with system W. Ann. Math. Artif. Intell. 90, 1–38 (2021). https://doi.org/10.1007/s10472-021-09777-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Konev, B., Lutz, C., Ponomaryov, D.K., Wolter, F.: Decomposing description logic ontologies. In: KR (2010)

    Google Scholar 

  17. Konev, B., Lutz, C., Walther, D., Wolter, F.: Model-theoretic inseparability and modularity of description logic ontologies. Artif. Intell. 203, 66–103 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44(1–2), 167–207 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kutsch, S.: InfOCF-Lib: a java library for OCF-based conditional inference. In: DKB/KIK@ KI, pp. 47–58 (2019)

    Google Scholar 

  20. Lehmann, D.: Another perspective on default reasoning. Ann. Math. Artif. Intell. 15(1), 61–82 (1995). https://doi.org/10.1007/BF01535841

    Article  MathSciNet  MATH  Google Scholar 

  21. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif. Intell. 55(1), 1–60 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Makinson, D.: General theory of cumulative inference. In: Reinfrank, M., de Kleer, J., Ginsberg, M.L., Sandewall, E. (eds.) NMR 1988. LNCS, vol. 346, pp. 1–18. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-50701-9_16

    Chapter  MATH  Google Scholar 

  23. Marek, V.W.: Introduction to Mathematics of Satisfiability. Chapman and Hall/CRC, London (2009)

    Book  MATH  Google Scholar 

  24. Morris, M., Ross, T., Meyer, T.: Algorithmic definitions for KLM-style defeasible disjunctive datalog. South African Comput. J. 32(2), 141–160 (2020)

    Article  Google Scholar 

  25. Parikh, R.: Beliefs, belief revision, and splitting languages. Logic Lang. Comput. 2(96), 266–268 (1999)

    MathSciNet  MATH  Google Scholar 

  26. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change, and Statistics. The University of Western Ontario Series in Philosophy of Science, vol. 42, pp. 105–134. Springer, Heidelberg (1988). https://doi.org/10.1007/978-94-009-2865-7_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse Heyninck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heyninck, J., Meyer, T. (2022). Relevance in the Computation of Non-monotonic Inferences. In: Pillay, A., Jembere, E., Gerber, A. (eds) Artificial Intelligence Research. SACAIR 2022. Communications in Computer and Information Science, vol 1734. Springer, Cham. https://doi.org/10.1007/978-3-031-22321-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22321-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22320-4

  • Online ISBN: 978-3-031-22321-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics