Abstract
Nowadays, conversational agents are making their way into our lives in many fields. The agent’s speech is an important element in human-computer interaction, and to appear natural and friendly it should avoid predefined texts. With this premise, together with the significant growth in natural language generation models, this work explores the capabilities of natural language models to lead to a more fluent human-computer interaction and open up a range of new opportunities and applications. The present work proposes a system for the generation of descriptions tailored to the user’s profile from different random topics using Natural Language models. After implementing the different applications, integrating natural language generation in conversational agents has proven to be highly effective.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brown, T.B., Mann, B., Ryder, N., Subbiah, M., et al.: Language models are few-shot learners (2020)
Cassell, J., Sullivan, J., Churchill, E., Prevost, S.: Embodied Conversational Agents. MIT Press (2000)
Clark, L., Pantidi, N., Cooney, O., Doyle, P., Garaialde, D., Edwards, J., Spillane, B., Gilmartin, E., Murad, C., Munteanu, C., Wade, V., Cowan, B.R.: What makes a good conversation? Challenges in designing truly conversational agents. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12. CHI ’19 (2019)
Clavel, C., Callejas, Z.: Sentiment analysis: from opinion mining to human-agent interaction. IEEE Trans. Affect. Comput. 7(1), 74–93 (2016)
Graterol, W., Diaz-Amado, J., Cardinale, Y., Dongo, I., Lopes-Silva, E., Santos-Libarino, C.: Emotion detection for social robots based on NLP transformers and an emotion ontology (2021)
Hameed, I.A.: Using natural language processing (NLP) for designing socially intelligent robots. In: 2016 Joint IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (2016)
Klingspor, V., Demiris, J., Kaiser, M.: Human-robot-communication and machine learning, p. 41
Laranjo, L., Dunn, A.G., Tong, H.L., Kocaballi, A.B., Chen, J., Bashir, R., Surian, D., Gallego, B., Magrabi, F., Lau, A.Y.S., Coiera, E.: Conversational agents in healthcare: a systematic review. J. Am. Med. Inf. Assoc. 25(9), 1248–1258 (2018)
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training, p. 12
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv:1910.10683 [cs, stat] (2020)
Rheu, M., Shin, J.Y., Peng, W., Huh-Yoo, J.: Systematic review: trust-building factors and implications for conversational agent design. Int. J. Human-Comput. Int. 37(1), 81–96 (2021)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to Sequence Learning with Neural Networks. In: Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I.: Attention is all you need (2017)
Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6
Woo, J., Botzheim, J., Kubota, N.: Conversation system for natural communication with robot partner. In: 2014 10th France-Japan/8th Europe-Asia Congress on Mechatronics (MECATRONICS2014- Tokyo) (2014)
Acknowledgement
This work was partially supported by project Robots sociales para estimulación física, cognitiva y afectiva de mayores (ROSES) RTI2018-096338-B-I00 funded by Agencia Estatal de Investigación (AEI), Ministerio de Ciencia, Innovación y Universidades. This publication is part of the R &D &I project PLEC2021-007819 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR. This work has also been supported by the Madrid Government (Comunidad de Madrid-Spain) under the Multiannual Agreement with UC3M (“Fostering Young Doctors Research”, SMM4HRI-CM-UC3M), and in the context of the V PRICIT (Research and Technological Innovation Regional Programme).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sevilla Salcedo, J., Martín Galván, L., Castillo, J.C., Castro-González, Á., Salichs, M.A. (2023). User-Adapted Semantic Description Generation Using Natural Language Models. In: Julián, V., Carneiro, J., Alonso, R.S., Chamoso, P., Novais, P. (eds) Ambient Intelligence—Software and Applications—13th International Symposium on Ambient Intelligence. ISAmI 2022. Lecture Notes in Networks and Systems, vol 603. Springer, Cham. https://doi.org/10.1007/978-3-031-22356-3_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-22356-3_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22355-6
Online ISBN: 978-3-031-22356-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)