Skip to main content

How to Obfuscate MPC Inputs

  • Conference paper
  • First Online:
Theory of Cryptography (TCC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13748))

Included in the following conference series:

Abstract

We introduce the idea of input obfuscation for secure two-party computation (io2PC). Suppose Alice holds a private value x and wants to allow clients to learn \(f(x,y_i)\), for their choice of \(y_i\), via a secure computation protocol. The goal of io2PC is for Alice to encode x so that an adversary who compromises her storage gets only oracle access to the function \(f(x,\cdot )\). At the same time, there must be a 2PC protocol for computing f(xy) that takes only this encoding (and not the plaintext x) as input.

We show how to achieve io2PC for functions that have virtual black-box (VBB) obfuscation in either the random oracle model or generic group model. For functions that can be VBB-obfuscated in the random oracle model, we provide an io2PC protocol by replacing the random oracle with an oblivious PRF. For functions that can be VBB-obfuscated in the generic group model, we show how Alice can instantiate a “personalized” generic group. A personalized generic group is one where only Alice can perform the algebraic operations of the group, but where she can let others perform operations in that group via an oblivious interactive protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Essentially, our protocol for \(\textsf{IOEval} \) simply allows the client to make some fixed number of OPRF queries. Instead of using those OPRF queries for k sequential evaluations of the function, the client can schedule the OPRF queries in parallel—e.g., the first query in all k evaluations, then the second query in all k evaluations, etc.

  2. 2.

    Following e.g., [19], we assume that \(\mathcal {A}\) always sends a \(\textsf{Compromise}\) message to \(\textsf{S} \) and \(\mathcal {F}_{\textrm{VOPRF}}\) simultaneously. These two actions correspond to a single action in the real protocol, i.e. compromising the server.

  3. 3.

    This is indeed possible in our protocol but would be mitigated if the common-group oracle had a group-multiplication feature exactly as powerful as \(\textsf {OfflineMult}\) of \(\mathcal {F}_{\textsf {pgg}}\).

References

  1. Albrecht, M.R., Davidson, A., Deo, A., Smart, N.P.: Round-optimal verifiable oblivious pseudorandom functions from ideal lattices. In: Garay, J.A. (ed.) PKC 2021, Part II. LNCS, vol. 12711, pp. 261–289. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75248-4_10

    Chapter  Google Scholar 

  2. Bartusek, J., Lepoint, T., Ma, F., Zhandry, M.: New Techniques for Obfuscating Conjunctions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 636–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_22

    Chapter  Google Scholar 

  3. Beimel, A., Gabizon, A., Ishai, Y., Kushilevitz, E., Meldgaard, S., Paskin-Cherniavsky, A.: Non-Interactive Secure Multiparty Computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 387–404. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_22

    Chapter  Google Scholar 

  4. Bellovin, S.M., Merritt, M.: Augmented encrypted key exchange: a password-based protocol secure against dictionary attacks and password file compromise. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 1993, pp. 244–250. ACM Press (1993)

    Google Scholar 

  5. Brakerski, Z., Rothblum, G.N.: Obfuscating conjunctions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 416–434. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_24

    Chapter  Google Scholar 

  6. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_1

    Chapter  Google Scholar 

  7. Canetti, R.: Towards realizing random oracles: hash functions that hide all partial information. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052255

    Chapter  Google Scholar 

  8. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press (2001)

    Google Scholar 

  9. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_28

    Chapter  Google Scholar 

  10. Canetti, R., Rothblum, G.N., Varia, M.: Obfuscation of hyperplane membership. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 72–89. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_5

    Chapter  MATH  Google Scholar 

  11. Freedman, M.J., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7_17

    Chapter  Google Scholar 

  12. Gentry, C., MacKenzie, P., Ramzan, Z.: A method for making password-based key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_9

    Chapter  Google Scholar 

  13. Gordon, S.D., Malkin, T., Rosulek, M., Wee, H.: Multi-party computation of polynomials and branching programs without simultaneous interaction. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 575–591. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_34

    Chapter  Google Scholar 

  14. Halevi, S., Ishai, Y., Jain, A., Komargodski, I., Sahai, A., Yogev, E.: Non-Interactive Multiparty Computation Without Correlated Randomness. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 181–211. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70700-6_7

    Chapter  Google Scholar 

  15. Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: computing without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_8

    Chapter  Google Scholar 

  16. Hesse, J.: Separating symmetric and asymmetric password-authenticated key exchange. In: Galdi, C., Kolesnikov, V. (eds.) SCN 2020. LNCS, vol. 12238, pp. 579–599. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57990-6_29

    Chapter  MATH  Google Scholar 

  17. Jager, T., Schwenk, J.: On the equivalence of generic group models. In: Baek, J., Bao, F., Chen, K., Lai, X. (eds.) ProvSec 2008. LNCS, vol. 5324, pp. 200–209. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88733-1_14

    Chapter  Google Scholar 

  18. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-protected secret sharing and T-PAKE in the password-only model. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part II. LNCS, vol. 8874, pp. 233–253. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_13

    Chapter  MATH  Google Scholar 

  19. Jarecki, S., Krawczyk, H., Xu, J.: OPAQUE: an asymmetric PAKE protocol secure against pre-computation attacks. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 456–486. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_15

    Chapter  Google Scholar 

  20. Jarecki, S., Liu, X.: Efficient oblivious pseudorandom function with applications to adaptive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 577–594. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_34

    Chapter  MATH  Google Scholar 

  21. Lynn, B., Prabhakaran, M., Sahai, A.: Positive results and techniques for obfuscation. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 20–39. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_2

    Chapter  Google Scholar 

  22. Maurer, U.M.: Abstract models of computation in cryptography (invited paper). In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005). https://doi.org/10.1007/11586821_1

    Chapter  MATH  Google Scholar 

  23. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_18

    Chapter  Google Scholar 

  24. Thomas, K., et al.: Protecting accounts from credential stuffing with password breach alerting. In: 28th USENIX Security Symposium (USENIX Security 19), Santa Clara, CA, pp. 1556–1571. USENIX Association (2019)

    Google Scholar 

  25. Wee, H.: On obfuscating point functions. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 523–532. ACM Press (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian McQuoid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McQuoid, I., Rosulek, M., Xu, J. (2022). How to Obfuscate MPC Inputs. In: Kiltz, E., Vaikuntanathan, V. (eds) Theory of Cryptography. TCC 2022. Lecture Notes in Computer Science, vol 13748. Springer, Cham. https://doi.org/10.1007/978-3-031-22365-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22365-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22364-8

  • Online ISBN: 978-3-031-22365-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics