Abstract
In CRYPTO’2019, Gohr firstly introduced deep learning into differential cryptanalysis. He successfully found 5/6/7/8-round neural differential distinguishers of Speck32/64 and mounted key recovery attacks against 11/12-round Speck32/64 with a variant of Bayesian optimization. In this paper, we make some improvements to Gohr’s framework and apply it to Simeck32/64. We also present some parameter tuning experience for running deep learning assisted key recovery attacks. As proof, we obtain 8/9/10-round neural differential distinguishers for Simeck32/64 and successfully recover the penultimate round and last round subkeys for 13/14/15-round Simeck32/64 with low data complexity and time complexity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The experiments of training neural distinguishers reported in this paper are performed on a workstation with an NVIDIA GeForce RTX 2080 Ti GPU, while the experiments of key recovery attacks reported in this paper are executed on a workstation with an NVIDIA Tesla V100 GPU.
References
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144 (2016)
Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for direct perception in autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2722–2730 (2015)
Rivest, R.L.: Cryptography and machine learning. In: Imai, H., Rivest, R.L., Matsumoto, T. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 427–439. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57332-1_36
Baryalai, M., Jang-Jaccard, J., Liu, D.: Towards privacy-preserving classification in neural networks. In: 2016 14th Annual Conference on Privacy, Security and Trust (PST), pp. 392–399. IEEE (2016)
Carbone, M., et al.: Deep learning to evaluate secure RSA implementations. IACR Trans. Cryptogr. Hardw. Embed. Syst. 132–161 (2019)
Ling, X., et al.: Deepsec: a uniform platform for security analysis of deep learning model. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 673–690. IEEE (2019)
Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_1
Picek, S., Samiotis, I.P., Kim, J., Heuser, A., Bhasin, S., Legay, A.: On the performance of convolutional neural networks for side-channel analysis. In: Chattopadhyay, A., Rebeiro, C., Yarom, Y. (eds.) SPACE 2018. LNCS, vol. 11348, pp. 157–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05072-6_10
Timon, B.: Non-profiled deep learning-based side-channel attacks with sensitivity analysis. IACR Trans. Cryptogr. Hardw. Embed. Syst. 107–131 (2019)
Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991)
Blondeau, C., Gérard, B.: Multiple differential cryptanalysis: theory and practice. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 35–54. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_3
Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_16
Knudsen, L.: Deal-a 128-bit block cipher. Complexity 258(2), 216 (1998)
Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_2
Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: application to SIMON, PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9
Zhou, C., Zhang, W., Ding, T., Xiang, Z.: Improving the MILP-based security evaluation algorithm against differential/linear cryptanalysis using a divide-and-conquer approach. IACR Trans. Symmetric Cryptol. 438–469 (2019)
Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen key differential cryptanalysis. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 584–601. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_37
Sun, S., et al.: Analysis of AES, SKINNY, and others with constraint programming. IACR Trans. Symmetric Cryptol. 281–306 (2017)
Sun, L., Wang, W., Wang, M.: Automatic search of bit-based division property for ARX ciphers and word-based division property. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 128–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_5
Liu, Y., De Witte, G., Ranea, A., Ashur, T.: Rotational-XOR cryptanalysis of reduced-round speck. IACR Trans. Symmetric Cryptol. 24–36 (2017)
Gohr, A.: Improving attacks on round-reduced Speck32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6
Benamira, A., Gerault, D., Peyrin, T., Tan, Q.Q.: A deeper look at machine learning-based cryptanalysis. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 805–835. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_28
Chen, Y., Yu, H.: Bridging machine learning and cryptanalysis via EDLCT. Cryptology ePrint Archive (2021)
Chaohui, F., Duan, M., Wei, Q., Qianqiong, W., Zhou, R., Hengchuan, S.: Polytopic differential attack based on deep learning and its application. J. Cryptol. Res. 8(4), 591–600 (2020)
Su, H.-C., Zhu, X.-Y., Ming, D.: Polytopic attack on round-reduced Simon32/64 using deep learning. In: Wu, Y., Yung, M. (eds.) Inscrypt 2020. LNCS, vol. 12612, pp. 3–20. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71852-7_1
Chen, Y., Hongbo, Yu.: Neural aided statistical attack for cryptanalysis. IACR Cryptology ePrint Archive 2020/1620 (2020)
Chen, Y., Hongbo, Yu.: Improved neural aided statistical attack for cryptanalysis. IACR Cryptology ePrint Archive 2021/311 (2021)
Chen, Y., Shen, Y., Yu, H., Yuan, S.: A new neural distinguisher considering features derived from multiple ciphertext pairs. Cryptology ePrint Archive (2021)
Bao, Z., Guo, J., Liu, M., Ma, L., Yi, T.: Conditional differential-neural cryptanalysis. IACR Cryptology ePrint Archive 2021/719 (2021)
Tian, W., Bin, H.: Deep learning assisted differential cryptanalysis for the lightweight cipher simon. KSII Trans. Internet Inf. Syst. 15(2), 600–616 (2021)
Hou, Z., Ren, J., Chen, S.: Cryptanalysis of round-reduced simon32 based on deep learning. IACR Cryptology ePrint Archive 2021/362 (2021)
Hou, Z., Ren, J., Chen, S.: Sat-based method to improve neural distinguisher and applications to simon. IACR Cryptology ePrint Archive 2021/452 (2021)
Hou, Z., Ren, J., Chen, S.: Improve neural distinguisher for cryptanalysis. Cryptology ePrint Archive (2021)
Kölbl, S., Roy, A.: A brief comparison of Simon and Simeck. In: Bogdanov, A. (ed.) LightSec 2016. LNCS, vol. 10098, pp. 69–88. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55714-4_6
Zhang, Y., Lyu, L., Qiao, K., Zhang, Z., Sun, S., Hu, L.: Automatic key recovery of feistel ciphers: application to SIMON and SIMECK. In: Deng, R., et al. (eds.) ISPEC 2021. LNCS, vol. 13107, pp. 147–167. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-93206-0_10
Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J. Cryptol. 21(1), 131–147 (2008)
Bagheri, N.: Linear cryptanalysis of reduced-round SIMECK variants. In: Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 140–152. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26617-6_8
Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_16
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Albrecht, M.R., Leander, G.: An all-in-one approach to differential cryptanalysis for small block ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 1–15. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35999-6_1
Biham, E., Chen, R.: Near-collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_18
Gohr, A.: Improving attacks on round-reduced Speck32/64 using deep learning. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_6
Gurobi Optimization. Gurobi optimizer (2008)
Acknowledgement
We would like to thank the anonymous reviewers for their valuable comments and suggestions. The first author is supported by the National Natural Science Foundation of China (Grant No. 62202460 and Grant No. 62172410) and the National Key Research and Development Project (Grant No. 2018YFA0704704 and Grant No. 2018YFB0803801). The second author is supported by the Start-up Grant from Nanyang Technological University in Singapore (Grant 04INS000397C230), and grants from Ministry of Education in Singapore (Grants RG91/20 and MOE2019-T2-1-060). The last author is sponsored by the Beijing Postdoctoral Research Foundation (Grant No. 2022-ZZ-070).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lyu, L., Tu, Y., Zhang, Y. (2022). Deep Learning Assisted Key Recovery Attack for Round-Reduced Simeck32/64. In: Susilo, W., Chen, X., Guo, F., Zhang, Y., Intan, R. (eds) Information Security. ISC 2022. Lecture Notes in Computer Science, vol 13640. Springer, Cham. https://doi.org/10.1007/978-3-031-22390-7_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-22390-7_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22389-1
Online ISBN: 978-3-031-22390-7
eBook Packages: Computer ScienceComputer Science (R0)