Abstract
Automated Machine Learning (AutoML) is an area of research that focuses on developing methods to generate machine learning models automatically. The idea of being able to build machine learning models with very little human intervention represents a great opportunity for the practice of applied machine learning. However, there is very little information on how to design an AutoML system in practice. Most of the research focuses on the problems facing optimization algorithms and leaves out the details of how that would be done in practice. In this paper, we propose a frame of reference for building general AutoML systems. Through a narrative review of the main approaches in the area, our main idea is to distill the fundamental concepts in order to support them in a single design. Finally, we discuss some open problems related to the application of AutoML for future research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achille, A., et al.: Task2vec: Task embedding for meta-learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6430–6439 (2019)
Baymurzina, D., Golikov, E., Burtsev, M.: A review of neural architecture search. Neurocomputing 474, 82–93 (2022)
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal Mach. Learn. Res. 13(2) (2012)
Bouneffouf, D., et al.: Survey on automated end-to-end data science? In: Proceedings of the International Joint Conference on Neural Networks (2020). www.scopus.com, cited By :2
Creswell, J.W., Creswell, J.D.: Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications (2017)
Cronin, P., Ryan, F., Coughlan, M.: Undertaking a literature review: a step-by-step approach. Br. J. Nursing 17(1), 38–43 (2008)
De Bie, T., De Raedt, L., Hernández-Orallo, J., Hoos, H.H., Smyth, P., Williams, C.K.: Automating data science: Prospects and challenges. arXiv preprint arXiv:2105.05699 (2021)
Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Surrogate benchmarks for hyperparameter optimization. In: MetaSel@ ECAI, pp. 24–31 (2014)
Elshawi, R., Sakr, S.: Automated machine learning: techniques and frameworks. In: Kutsche, R.-D., Zimányi, E. (eds.) eBISS 2019. LNBIP, vol. 390, pp. 40–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61627-4_3
Escalante, H.J.: Automated Machine Learning-A Brief Review at the End of the Early Years. Natural Computing Series (2021). www.scopus.com
Fernández-Godino, M.G., Park, C., Kim, N.H., Haftka, R.T.: Review of multi-fidelity models. arXiv preprint arXiv:1609.07196 (2016)
Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Auto-sklearn 2.0: The next generation. arXiv preprint arXiv:2007.04074 24 (2020)
Feurer, M., Hutter, F.: Hyperparameter optimization. In: Automated machine learning, pp. 3–33. Springer, Cham (2019), https://doi.org/10.1007/978-1-4899-7687-1_100200
Fusi, N., Sheth, R., Elibol, M.: Probabilistic matrix factorization for automated machine learning. In: Advances in Neural Information Processing Systems 31 (2018)
He, X., Zhao, K., Chu, X.: Automl: A survey of the state-of-the-art. Knowledge-Based Systems 212 (2021). www.scopus.com, cited By :155
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40
Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hyperparameter optimization. In: Artificial Intelligence and Statistics, pp. 240–248. PMLR (2016)
Jomaa, H.S., Schmidt-Thieme, L., Grabocka, J.: Dataset2vec: Learning dataset meta-features. Data Min. Knowl. Disc. 35(3), 964–985 (2021)
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)
Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-WEKA: automatic model selection and hyperparameter optimization in WEKA. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 81–95. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_4
Kulbach, C., Philipp, P., Thoma, S.: Personalized automated machine learning. Frontiers in Artificial Intelligence and Applications, vol. 325 (2020). www.scopus.com
Lakshmi Patibandla, R.S.M., Srinivas, V.S., Mohanty, S.N., Ranjan Pattanaik, C.: Automatic machine learning: An exploratory review. In: 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2021 (2021). www.scopus.com
Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)
Li, Y., Wang, Z., Ding, B., Zhang, C.: Automl: A perspective where industry meets academy. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 4048–4049 (2021). www.scopus.com
Li, Y., Wang, Z., Xie, Y., Ding, B., Zeng, K., Zhang, C.: Automl: From methodology to application. In: International Conference on Information and Knowledge Management, Proceedings. pp. 4853–4856 (2021). www.scopus.com, cited By :1
Nagarajah, T., Poravi, G.: An extensive checklist for building automl systems. In: CEUR Workshop Proceedings, vol. 2360 (2019). www.scopus.com
Nagarajah, T., Poravi, G.: A review on automated machine learning (automl) systems. In: 2019 IEEE 5th International Conference for Convergence in Technology, I2CT 2019 (2019). www.scopus.com, cited By :10
Paré, G., Trudel, M.C., Jaana, M., Kitsiou, S.: Synthesizing information systems knowledge: A typology of literature reviews. Inf. Manag. 52(2), 183–199 (2015)
Rivolli, A., Garcia, L.P., Soares, C., Vanschoren, J., de Carvalho, A.C.: Characterizing classification datasets: a study of meta-features for meta-learning. arXiv preprint arXiv:1808.10406 (2018)
Robson, C.: Real world research: A resource for social scientists and practitioner-researchers. Wiley-Blackwell (2002)
Santu, S.K.K., Hassan, M.M., Smith, M.J., Xu, L., Zhai, C., Veeramachaneni, K.: Automl to date and beyond: Challenges and opportunities. ACM Comput. Surv. 54(8) (2022). www.scopus.com, cited By :2
Tuggener, L., et al.: Automated machine learning in practice: State of the art and recent results. In: Proceedings - 6th Swiss Conference on Data Science, SDS 2019, pp. 31–36 (2019). www.scopus.com, cited By :18
Vaccaro, L., Sansonetti, G., Micarelli, A.: Automated machine learning: prospects and challenges. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 119–134. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_9
Vaccaro, L., Sansonetti, G., Micarelli, A.: An empirical review of automated machine learning. Computers 10(1), 1–27 (2021). www.scopus.com, cited By :7
Vanschoren, J.: Meta-learning. In: Automated Machine Learning, pp. 35–61. Springer, Cham (2019). https://doi.org/10.1007/978-1-4419-9863-7_613
Waring, J., Lindvall, C., Umeton, R.: Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artifi. Intell. Med. 104 (2020). www.scopus.com, cited By :125
Weng, Z.: From conventional machine learning to automl. J. Phy. Conf. Ser. 1207 (2019). www.scopus.com, cited By :9
Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)
Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition. pp. 8697–8710 (2018)
Zöller, M., Huber, M.F.: Benchmark and survey of automated machine learning frameworks. J. Artifi. Intell. Res. 70, 409–472 (2021). www.scopus.com, cited By :30
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vazquez, H.C. (2022). A General Recipe for Automated Machine Learning in Practice. In: Bicharra Garcia, A.C., Ferro, M., Rodríguez Ribón, J.C. (eds) Advances in Artificial Intelligence – IBERAMIA 2022. IBERAMIA 2022. Lecture Notes in Computer Science(), vol 13788. Springer, Cham. https://doi.org/10.1007/978-3-031-22419-5_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-22419-5_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22418-8
Online ISBN: 978-3-031-22419-5
eBook Packages: Computer ScienceComputer Science (R0)