Skip to main content

A General Recipe for Automated Machine Learning in Practice

  • Conference paper
  • First Online:
Advances in Artificial Intelligence – IBERAMIA 2022 (IBERAMIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13788))

Included in the following conference series:

  • 755 Accesses

Abstract

Automated Machine Learning (AutoML) is an area of research that focuses on developing methods to generate machine learning models automatically. The idea of being able to build machine learning models with very little human intervention represents a great opportunity for the practice of applied machine learning. However, there is very little information on how to design an AutoML system in practice. Most of the research focuses on the problems facing optimization algorithms and leaves out the details of how that would be done in practice. In this paper, we propose a frame of reference for building general AutoML systems. Through a narrative review of the main approaches in the area, our main idea is to distill the fundamental concepts in order to support them in a single design. Finally, we discuss some open problems related to the application of AutoML for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achille, A., et al.: Task2vec: Task embedding for meta-learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6430–6439 (2019)

    Google Scholar 

  2. Baymurzina, D., Golikov, E., Burtsev, M.: A review of neural architecture search. Neurocomputing 474, 82–93 (2022)

    Article  Google Scholar 

  3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal Mach. Learn. Res. 13(2) (2012)

    Google Scholar 

  4. Bouneffouf, D., et al.: Survey on automated end-to-end data science? In: Proceedings of the International Joint Conference on Neural Networks (2020). www.scopus.com, cited By :2

  5. Creswell, J.W., Creswell, J.D.: Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications (2017)

    Google Scholar 

  6. Cronin, P., Ryan, F., Coughlan, M.: Undertaking a literature review: a step-by-step approach. Br. J. Nursing 17(1), 38–43 (2008)

    Article  Google Scholar 

  7. De Bie, T., De Raedt, L., Hernández-Orallo, J., Hoos, H.H., Smyth, P., Williams, C.K.: Automating data science: Prospects and challenges. arXiv preprint arXiv:2105.05699 (2021)

  8. Eggensperger, K., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Surrogate benchmarks for hyperparameter optimization. In: MetaSel@ ECAI, pp. 24–31 (2014)

    Google Scholar 

  9. Elshawi, R., Sakr, S.: Automated machine learning: techniques and frameworks. In: Kutsche, R.-D., Zimányi, E. (eds.) eBISS 2019. LNBIP, vol. 390, pp. 40–69. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61627-4_3

    Chapter  Google Scholar 

  10. Escalante, H.J.: Automated Machine Learning-A Brief Review at the End of the Early Years. Natural Computing Series (2021). www.scopus.com

  11. Fernández-Godino, M.G., Park, C., Kim, N.H., Haftka, R.T.: Review of multi-fidelity models. arXiv preprint arXiv:1609.07196 (2016)

  12. Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., Hutter, F.: Auto-sklearn 2.0: The next generation. arXiv preprint arXiv:2007.04074 24 (2020)

  13. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Automated machine learning, pp. 3–33. Springer, Cham (2019), https://doi.org/10.1007/978-1-4899-7687-1_100200

  14. Fusi, N., Sheth, R., Elibol, M.: Probabilistic matrix factorization for automated machine learning. In: Advances in Neural Information Processing Systems 31 (2018)

    Google Scholar 

  15. He, X., Zhao, K., Chu, X.: Automl: A survey of the state-of-the-art. Knowledge-Based Systems 212 (2021). www.scopus.com, cited By :155

  16. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS, vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25566-3_40

    Chapter  Google Scholar 

  17. Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hyperparameter optimization. In: Artificial Intelligence and Statistics, pp. 240–248. PMLR (2016)

    Google Scholar 

  18. Jomaa, H.S., Schmidt-Thieme, L., Grabocka, J.: Dataset2vec: Learning dataset meta-features. Data Min. Knowl. Disc. 35(3), 964–985 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kotthoff, L., Thornton, C., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Auto-WEKA: automatic model selection and hyperparameter optimization in WEKA. In: Hutter, F., Kotthoff, L., Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 81–95. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05318-5_4

    Chapter  Google Scholar 

  21. Kulbach, C., Philipp, P., Thoma, S.: Personalized automated machine learning. Frontiers in Artificial Intelligence and Applications, vol. 325 (2020). www.scopus.com

  22. Lakshmi Patibandla, R.S.M., Srinivas, V.S., Mohanty, S.N., Ranjan Pattanaik, C.: Automatic machine learning: An exploratory review. In: 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), ICRITO 2021 (2021). www.scopus.com

  23. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A novel bandit-based approach to hyperparameter optimization. J. Mach. Learn. Res. 18(1), 6765–6816 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Li, Y., Wang, Z., Ding, B., Zhang, C.: Automl: A perspective where industry meets academy. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 4048–4049 (2021). www.scopus.com

  25. Li, Y., Wang, Z., Xie, Y., Ding, B., Zeng, K., Zhang, C.: Automl: From methodology to application. In: International Conference on Information and Knowledge Management, Proceedings. pp. 4853–4856 (2021). www.scopus.com, cited By :1

  26. Nagarajah, T., Poravi, G.: An extensive checklist for building automl systems. In: CEUR Workshop Proceedings, vol. 2360 (2019). www.scopus.com

  27. Nagarajah, T., Poravi, G.: A review on automated machine learning (automl) systems. In: 2019 IEEE 5th International Conference for Convergence in Technology, I2CT 2019 (2019). www.scopus.com, cited By :10

  28. Paré, G., Trudel, M.C., Jaana, M., Kitsiou, S.: Synthesizing information systems knowledge: A typology of literature reviews. Inf. Manag. 52(2), 183–199 (2015)

    Article  Google Scholar 

  29. Rivolli, A., Garcia, L.P., Soares, C., Vanschoren, J., de Carvalho, A.C.: Characterizing classification datasets: a study of meta-features for meta-learning. arXiv preprint arXiv:1808.10406 (2018)

  30. Robson, C.: Real world research: A resource for social scientists and practitioner-researchers. Wiley-Blackwell (2002)

    Google Scholar 

  31. Santu, S.K.K., Hassan, M.M., Smith, M.J., Xu, L., Zhai, C., Veeramachaneni, K.: Automl to date and beyond: Challenges and opportunities. ACM Comput. Surv. 54(8) (2022). www.scopus.com, cited By :2

  32. Tuggener, L., et al.: Automated machine learning in practice: State of the art and recent results. In: Proceedings - 6th Swiss Conference on Data Science, SDS 2019, pp. 31–36 (2019). www.scopus.com, cited By :18

  33. Vaccaro, L., Sansonetti, G., Micarelli, A.: Automated machine learning: prospects and challenges. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12252, pp. 119–134. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58811-3_9

    Chapter  Google Scholar 

  34. Vaccaro, L., Sansonetti, G., Micarelli, A.: An empirical review of automated machine learning. Computers 10(1), 1–27 (2021). www.scopus.com, cited By :7

  35. Vanschoren, J.: Meta-learning. In: Automated Machine Learning, pp. 35–61. Springer, Cham (2019). https://doi.org/10.1007/978-1-4419-9863-7_613

  36. Waring, J., Lindvall, C., Umeton, R.: Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artifi. Intell. Med. 104 (2020). www.scopus.com, cited By :125

  37. Weng, Z.: From conventional machine learning to automl. J. Phy. Conf. Ser. 1207 (2019). www.scopus.com, cited By :9

  38. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

  39. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference On Computer Vision And Pattern Recognition. pp. 8697–8710 (2018)

    Google Scholar 

  40. Zöller, M., Huber, M.F.: Benchmark and survey of automated machine learning frameworks. J. Artifi. Intell. Res. 70, 409–472 (2021). www.scopus.com, cited By :30

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernan Ceferino Vazquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vazquez, H.C. (2022). A General Recipe for Automated Machine Learning in Practice. In: Bicharra Garcia, A.C., Ferro, M., Rodríguez Ribón, J.C. (eds) Advances in Artificial Intelligence – IBERAMIA 2022. IBERAMIA 2022. Lecture Notes in Computer Science(), vol 13788. Springer, Cham. https://doi.org/10.1007/978-3-031-22419-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22419-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22418-8

  • Online ISBN: 978-3-031-22419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics