Abstract
Cardiac arrhythmias are heartbeat disorders in which the electrical impulses that coordinate the cardiac cycle malfunction. The heart’s electrical activity is recorded using electrocardiography (ECG), a non-invasive method that helps diagnose several cardiovascular diseases. However, interpretation of ECG signals can be difficult due to the presence of noise, the irregularity of the heartbeat, and their nonstationary nature. Hence, the use of computational systems is required to support the diagnosis of cardiac arrhythmias. The main challenge in developing AI-assisted ECG systems is achieving accuracies suitable for application in clinical settings. Therefore, this paper introduces a software tool for classifying cardiac arrhythmias in ECG recordings that uses filtering, segmentation, and feature extraction of the QRS interval. We use the MIT-BIH Arrhythmia Database, which has 48 records of five different types of arrhythmias. We evaluate the data using supervised machine learning techniques such as k-Nearest Neighbors (KNN), Random Forest (RF), Multilayer Perceptron (MLP), and the Naive Bayesian classifier. This paper shows the impact of selecting and employing filtering and feature extraction methods on the performance of supervised machine learning algorithms compared with benchmark approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Luis, F., Moncayo, G.: Libro de la salud cardiovascular del Hospital clínico san carlos y la Fundación BBVA. 1nd edn., Madrid (2009)
Benjamin, E. J., Virani, S. S., Callaway, C. W.: Heart disease and stroke statistics - 2018 update: a report from the American heart association. Circulation 137(12) (2018). https://doi.org/10.1161/CIR.0000000000000558
Pozo-Ruiz, S., Morocho-Cayamcela, M.E., Mayorca-Torres, D., H. Peluffo-Ordóñez, D.: Parkinson’s disease diagnosis through electroencephalographic signal processing and sub-optimal feature extraction. In: Rocha, Á., Ferrás, C., Méndez Porras, A., Jimenez Delgado, E. (eds.) ICITS 2022. LNNS, vol. 414, pp. 118–127. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96293-7_12
Alqudah, A.M., Albadarneh, A., Abu-Qasmieh, I., Alquran, H.: Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features. Aust. Phys. Eng. Sci. Med. 42(1), 149–157 (2019). https://doi.org/10.1007/s13246-019-00722-z
Yang, H., Wei, Z.: Arrhythmia recognition and classification using combined parametric and visual pattern features of ECG morphology. IEEE Access 8, 47103–47117 (2020). https://doi.org/10.1109/ACCESS.2020.2979256
Ramkumar, M., Ganesh Babu, C., Vinoth Kumar, K., Hepsiba, D., Manjunathan, A., Sarath Kumar, R.: ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks. J. Phys. Conf. Ser. 1831(1), 1–13 (2021). https://doi.org/10.1088/1742-6596/1831/1/012015
Cepeda, E., Sánchez-Pozo, N.N., Peluffo-Ordóñez, D.H., González-Vergara, J., Almeida-Galárraga, D.: ECG-based heartbeat classification for arrhythmia detection using artificial neural networks. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2022, ICCSA 2022, Lecture Notes in Computer Science, vol. 13376, Springer, Cham (2021). https://doi.org/10.1007/978-3-031-10450-3_20
Bhoi, A. K., Sherpa, K. S., Khandelwal, B.: Ischemia and arrhythmia classification using time-frequency domain features of QRS complex. Procedia Comput. Sci. 132(Iccids), 606–613 (2018). https://doi.org/10.1016/j.procs.2018.05.014
Sahoo, S., Kanungo, B., Behera, S., Sabut, S.: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. J. Int. Meas. Confeder. 108, 55–66 (2017). https://doi.org/10.1016/j.measurement.2017.05.022
Madan, P., Singh, V., Singh, D.P., Diwakar, M., Pant, B., Kishor, A.: A hybrid deep learning approach for ECG-based arrhythmia classification. Bioengineering 9(4), 1–13 (2022). https://doi.org/10.3390/bioengineering9040152
MIT-BIH Arrhythmia Database. https://www.physionet.org/content/mitdb/1.0.0/. Accessed 27 May 2022
Ortega, C. D., Ibarra-piandoy, A., Viveros-villada, E., Mayorca-torres, D.: Prototipo para la adquisición y caracterización de señales electromiográficas superficiales del movimiento de flexión-extensión de los dedos de la mano. Iberian J. Inf. Syst. Technol., 52–65 (2020)
Sharma, P., Dinkar, S.K., Gupta, D.V.: A novel hybrid deep learning method with cuckoo search algorithm for classification of arrhythmia disease using ECG signals. Neural Comput. Appl. 33(19), 13123–13143 (2021). https://doi.org/10.1007/s00521-021-06005-7
Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Prog. Biomed. 127, 52–63 (2016). https://doi.org/10.1016/j.cmpb.2015.12.024
Costa, R., Winkert, T., Manhães, A., Teixeira, J.P.: QRS peaks, P and T waves identification in ECG. Procedia Comput. Sci. 181(2019), 957–964 (2021). https://doi.org/10.1016/j.procs.2021.01.252
Kumar, C., Kolekar, M.H.: Cardiac arrhythmia classification using tunable Q-wavelet transform based features and support vector machine classifier. Biomed. Signal Process. Control 59, 101875 (2020). https://doi.org/10.1016/j.bspc.2020.101875
Rodriguez-Sotelo, J.L., Peluffo-Ordoñez, D., Cuesta-Frau, D., Castellanos-Domínguez, G.: Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Comput. Methods Programs Biomed. 108(1), 250–261 (2012). https://doi.org/10.1016/j.bspc.2020.101875
Khorrami, H., Moavenian, M.: A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Syst. Appl. 37(8), 5751–5757 (2010). https://doi.org/10.1016/j.eswa.2010.02.033
Ranaware, P. N., Deshpande, R. A.: Detection of arrhythmia based on discrete wavelet transform using artificial neural network and support vector machine. In: International Conference on Communication and Signal Processing, pp. 1767–1770 (2016)
Xiang, Y., Lin, Z., Meng, J.: Automatic QRS complex detection using two-level convolutional neural network. J. BioMed. Eng. Online 17(1), 1–17 (2018). https://doi.org/10.1186/s12938-018-0441-4
Pandey, S.K., Janghel, R.R., Vani, V.: Patient specific machine learning models for ECG signal classification. Procedia Comput. Sci. 167(2019), 2181–2190 (2020). https://doi.org/10.1016/j.procs.2020.03.269
Ramkumar, M.H., Ganesh Babu, C., Ganesh Babu, K., Hepsiba, D., Manjunathan, A., Sarath Kumar, R.: ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks. J. Phys. Conf. Ser. 1831(1), 1–13 (2021). https://doi.org/10.1088/1742-6596/1831/1/012015
Nascimento, N.M.M., Marinho, L.B., Peixoto, S.A., do Vale Madeiro, J.P., de Albuquerque, V.H.C., Filho, P.P.R.: Heart arrhythmia classification based on statistical moments and structural co-occurrence. Circ. Syst. Signal Process. 39(2), 631–650 (2019). https://doi.org/10.1007/s00034-019-01196-w
Ye, C., Kumar, B. V. K. V., Coimbra, M. T.: Combining general multi-class and specific two-class classifiers for improved customized ECG heartbeat classification. In: Proceedings - International Conference on Pattern Recognition ICPR, pp. 2428–2431 (2012)
Ayar, M., Sabamoniri, S.: An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm. Inf. Med. Unlocked 13, 167–175 (2018). https://doi.org/10.1016/j.imu.2018.06.002
Saenz-cogollo, J. F., Agelli, M.: Investigating feature selection and random forests for inter-patient heartbeat classification. In: Algorithms, pp. 2–13. (2020). https://doi.org/10.3390/a13040075
Wu, M., Lu, Y., Yang, W., Wong, S.Y.: A study on arrhythmia via ECG signal classification using the convolutional neural network. Front. Comput. Neurosci. 14(January), 1–10 (2021). https://doi.org/10.3389/fncom.2020.564015
Mazidi, M. H., Eshghi, M., Raoufy, M. R.: Premature ventricular contraction (PVC) detection system based on tunable Q-factor wavelet transform. J. Biomed. Phys. Eng. 12(1), 61–74 (2022). https://doi.org/10.31661/jbpe.v0i0.1235
Acknowledgments
The authors would like to acknowledge the valuable support given by the SDAS Research Group (https://sdas-group.com/).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Andrés Ayala-Cucas, H., Mora-Piscal, E.A., Mayorca-Torres, D., Peluffo-Ordoñez, D.H., León-Salas, A.J. (2022). Impact of ECG Signal Preprocessing and Filtering on Arrhythmia Classification Using Machine Learning Techniques. In: Bicharra Garcia, A.C., Ferro, M., Rodríguez Ribón, J.C. (eds) Advances in Artificial Intelligence – IBERAMIA 2022. IBERAMIA 2022. Lecture Notes in Computer Science(), vol 13788. Springer, Cham. https://doi.org/10.1007/978-3-031-22419-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-22419-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22418-8
Online ISBN: 978-3-031-22419-5
eBook Packages: Computer ScienceComputer Science (R0)