Skip to main content

Impact of ECG Signal Preprocessing and Filtering on Arrhythmia Classification Using Machine Learning Techniques

  • Conference paper
  • First Online:
Advances in Artificial Intelligence – IBERAMIA 2022 (IBERAMIA 2022)

Abstract

Cardiac arrhythmias are heartbeat disorders in which the electrical impulses that coordinate the cardiac cycle malfunction. The heart’s electrical activity is recorded using electrocardiography (ECG), a non-invasive method that helps diagnose several cardiovascular diseases. However, interpretation of ECG signals can be difficult due to the presence of noise, the irregularity of the heartbeat, and their nonstationary nature. Hence, the use of computational systems is required to support the diagnosis of cardiac arrhythmias. The main challenge in developing AI-assisted ECG systems is achieving accuracies suitable for application in clinical settings. Therefore, this paper introduces a software tool for classifying cardiac arrhythmias in ECG recordings that uses filtering, segmentation, and feature extraction of the QRS interval. We use the MIT-BIH Arrhythmia Database, which has 48 records of five different types of arrhythmias. We evaluate the data using supervised machine learning techniques such as k-Nearest Neighbors (KNN), Random Forest (RF), Multilayer Perceptron (MLP), and the Naive Bayesian classifier. This paper shows the impact of selecting and employing filtering and feature extraction methods on the performance of supervised machine learning algorithms compared with benchmark approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luis, F., Moncayo, G.: Libro de la salud cardiovascular del Hospital clínico san carlos y la Fundación BBVA. 1nd edn., Madrid (2009)

    Google Scholar 

  2. Benjamin, E. J., Virani, S. S., Callaway, C. W.: Heart disease and stroke statistics - 2018 update: a report from the American heart association. Circulation 137(12) (2018). https://doi.org/10.1161/CIR.0000000000000558

  3. Pozo-Ruiz, S., Morocho-Cayamcela, M.E., Mayorca-Torres, D., H. Peluffo-Ordóñez, D.: Parkinson’s disease diagnosis through electroencephalographic signal processing and sub-optimal feature extraction. In: Rocha, Á., Ferrás, C., Méndez Porras, A., Jimenez Delgado, E. (eds.) ICITS 2022. LNNS, vol. 414, pp. 118–127. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96293-7_12

    Chapter  Google Scholar 

  4. Alqudah, A.M., Albadarneh, A., Abu-Qasmieh, I., Alquran, H.: Developing of robust and high accurate ECG beat classification by combining Gaussian mixtures and wavelets features. Aust. Phys. Eng. Sci. Med. 42(1), 149–157 (2019). https://doi.org/10.1007/s13246-019-00722-z

    Article  Google Scholar 

  5. Yang, H., Wei, Z.: Arrhythmia recognition and classification using combined parametric and visual pattern features of ECG morphology. IEEE Access 8, 47103–47117 (2020). https://doi.org/10.1109/ACCESS.2020.2979256

    Article  Google Scholar 

  6. Ramkumar, M., Ganesh Babu, C., Vinoth Kumar, K., Hepsiba, D., Manjunathan, A., Sarath Kumar, R.: ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks. J. Phys. Conf. Ser. 1831(1), 1–13 (2021). https://doi.org/10.1088/1742-6596/1831/1/012015

    Article  Google Scholar 

  7. Cepeda, E., Sánchez-Pozo, N.N., Peluffo-Ordóñez, D.H., González-Vergara, J., Almeida-Galárraga, D.: ECG-based heartbeat classification for arrhythmia detection using artificial neural networks. In: Gervasi, O., Murgante, B., Hendrix, E.M.T., Taniar, D., Apduhan, B.O. (eds) Computational Science and Its Applications - ICCSA 2022, ICCSA 2022, Lecture Notes in Computer Science, vol. 13376, Springer, Cham (2021). https://doi.org/10.1007/978-3-031-10450-3_20

  8. Bhoi, A. K., Sherpa, K. S., Khandelwal, B.: Ischemia and arrhythmia classification using time-frequency domain features of QRS complex. Procedia Comput. Sci. 132(Iccids), 606–613 (2018). https://doi.org/10.1016/j.procs.2018.05.014

  9. Sahoo, S., Kanungo, B., Behera, S., Sabut, S.: Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. J. Int. Meas. Confeder. 108, 55–66 (2017). https://doi.org/10.1016/j.measurement.2017.05.022

    Article  Google Scholar 

  10. Madan, P., Singh, V., Singh, D.P., Diwakar, M., Pant, B., Kishor, A.: A hybrid deep learning approach for ECG-based arrhythmia classification. Bioengineering 9(4), 1–13 (2022). https://doi.org/10.3390/bioengineering9040152

    Article  Google Scholar 

  11. MIT-BIH Arrhythmia Database. https://www.physionet.org/content/mitdb/1.0.0/. Accessed 27 May 2022

  12. Ortega, C. D., Ibarra-piandoy, A., Viveros-villada, E., Mayorca-torres, D.: Prototipo para la adquisición y caracterización de señales electromiográficas superficiales del movimiento de flexión-extensión de los dedos de la mano. Iberian J. Inf. Syst. Technol., 52–65 (2020)

    Google Scholar 

  13. Sharma, P., Dinkar, S.K., Gupta, D.V.: A novel hybrid deep learning method with cuckoo search algorithm for classification of arrhythmia disease using ECG signals. Neural Comput. Appl. 33(19), 13123–13143 (2021). https://doi.org/10.1007/s00521-021-06005-7

    Article  Google Scholar 

  14. Elhaj, F.A., Salim, N., Harris, A.R., Swee, T.T., Ahmed, T.: Arrhythmia recognition and classification using combined linear and nonlinear features of ECG signals. Comput. Methods Prog. Biomed. 127, 52–63 (2016). https://doi.org/10.1016/j.cmpb.2015.12.024

    Article  Google Scholar 

  15. Costa, R., Winkert, T., Manhães, A., Teixeira, J.P.: QRS peaks, P and T waves identification in ECG. Procedia Comput. Sci. 181(2019), 957–964 (2021). https://doi.org/10.1016/j.procs.2021.01.252

    Article  Google Scholar 

  16. Kumar, C., Kolekar, M.H.: Cardiac arrhythmia classification using tunable Q-wavelet transform based features and support vector machine classifier. Biomed. Signal Process. Control 59, 101875 (2020). https://doi.org/10.1016/j.bspc.2020.101875

    Article  Google Scholar 

  17. Rodriguez-Sotelo, J.L., Peluffo-Ordoñez, D., Cuesta-Frau, D., Castellanos-Domínguez, G.: Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Comput. Methods Programs Biomed. 108(1), 250–261 (2012). https://doi.org/10.1016/j.bspc.2020.101875

    Article  Google Scholar 

  18. Khorrami, H., Moavenian, M.: A comparative study of DWT, CWT and DCT transformations in ECG arrhythmias classification. Expert Syst. Appl. 37(8), 5751–5757 (2010). https://doi.org/10.1016/j.eswa.2010.02.033

    Article  Google Scholar 

  19. Ranaware, P. N., Deshpande, R. A.: Detection of arrhythmia based on discrete wavelet transform using artificial neural network and support vector machine. In: International Conference on Communication and Signal Processing, pp. 1767–1770 (2016)

    Google Scholar 

  20. Xiang, Y., Lin, Z., Meng, J.: Automatic QRS complex detection using two-level convolutional neural network. J. BioMed. Eng. Online 17(1), 1–17 (2018). https://doi.org/10.1186/s12938-018-0441-4

    Article  Google Scholar 

  21. Pandey, S.K., Janghel, R.R., Vani, V.: Patient specific machine learning models for ECG signal classification. Procedia Comput. Sci. 167(2019), 2181–2190 (2020). https://doi.org/10.1016/j.procs.2020.03.269

    Article  Google Scholar 

  22. Ramkumar, M.H., Ganesh Babu, C., Ganesh Babu, K., Hepsiba, D., Manjunathan, A., Sarath Kumar, R.: ECG cardiac arrhythmias classification using DWT, ICA and MLP neural networks. J. Phys. Conf. Ser. 1831(1), 1–13 (2021). https://doi.org/10.1088/1742-6596/1831/1/012015

    Article  Google Scholar 

  23. Nascimento, N.M.M., Marinho, L.B., Peixoto, S.A., do Vale Madeiro, J.P., de Albuquerque, V.H.C., Filho, P.P.R.: Heart arrhythmia classification based on statistical moments and structural co-occurrence. Circ. Syst. Signal Process. 39(2), 631–650 (2019). https://doi.org/10.1007/s00034-019-01196-w

    Article  Google Scholar 

  24. Ye, C., Kumar, B. V. K. V., Coimbra, M. T.: Combining general multi-class and specific two-class classifiers for improved customized ECG heartbeat classification. In: Proceedings - International Conference on Pattern Recognition ICPR, pp. 2428–2431 (2012)

    Google Scholar 

  25. Ayar, M., Sabamoniri, S.: An ECG-based feature selection and heartbeat classification model using a hybrid heuristic algorithm. Inf. Med. Unlocked 13, 167–175 (2018). https://doi.org/10.1016/j.imu.2018.06.002

    Article  Google Scholar 

  26. Saenz-cogollo, J. F., Agelli, M.: Investigating feature selection and random forests for inter-patient heartbeat classification. In: Algorithms, pp. 2–13. (2020). https://doi.org/10.3390/a13040075

  27. Wu, M., Lu, Y., Yang, W., Wong, S.Y.: A study on arrhythmia via ECG signal classification using the convolutional neural network. Front. Comput. Neurosci. 14(January), 1–10 (2021). https://doi.org/10.3389/fncom.2020.564015

    Article  Google Scholar 

  28. Mazidi, M. H., Eshghi, M., Raoufy, M. R.: Premature ventricular contraction (PVC) detection system based on tunable Q-factor wavelet transform. J. Biomed. Phys. Eng. 12(1), 61–74 (2022). https://doi.org/10.31661/jbpe.v0i0.1235

Download references

Acknowledgments

The authors would like to acknowledge the valuable support given by the SDAS Research Group (https://sdas-group.com/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagoberto Mayorca-Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrés Ayala-Cucas, H., Mora-Piscal, E.A., Mayorca-Torres, D., Peluffo-Ordoñez, D.H., León-Salas, A.J. (2022). Impact of ECG Signal Preprocessing and Filtering on Arrhythmia Classification Using Machine Learning Techniques. In: Bicharra Garcia, A.C., Ferro, M., Rodríguez Ribón, J.C. (eds) Advances in Artificial Intelligence – IBERAMIA 2022. IBERAMIA 2022. Lecture Notes in Computer Science(), vol 13788. Springer, Cham. https://doi.org/10.1007/978-3-031-22419-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22419-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22418-8

  • Online ISBN: 978-3-031-22419-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics