Skip to main content

Decomposition Method for Solving the Quadratic Programming Problem in the Aircraft Assembly Modeling

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2022)

Abstract

Aircraft assembly modeling requires solving the contact problem which can be reduced to the Quadratic Programming (QP) problem with dense ill-conditioned Hessian. For dozens of thousands of variables solving the QP problem requires huge time and RAM space. This paper suggests decomposing the problem into several sub-QP problems according to the geometric regions to reduce both solving time and memory requirements. The important feature of the considered QP problem is the density of the Hessian matrix which means that decomposed regions have mutual interference not only along their common boundary but instead on their whole areas. Suggested decomposition method solves sub-QP problems iteratively until the solution of the original QP is found. Convergence is proved under certain conditions. The results for test models of fuselage section joint and simultaneous joint of the upper and lower wing panels are presented.

The research was supported by Russian Science Foundation (project No. 22-19-00062, https://rscf.ru/en/project/22-19-00062/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baklanov, S., Stefanova, M., Lupuleac, S.: Newton projection method as applied to assembly simulation. Optim. Methods Softw. 37, 1–28 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Bertsekas, D.: Projected newton methods for optimization problems with simple constraints. J. Control Optim. 20(2), 221–246 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blanzé, C., Champaney, L., Cognard, J.Y., Ladeveze, P.: A modular approach to structure assembly computations: application to contact problems. Eng. Comput. 13, 15–32 (1996)

    Article  MathSciNet  Google Scholar 

  4. Guyan, R.J.: Reduction of stiffness and mass matrix. AIAA J. 3(2), 380 (1965)

    Article  Google Scholar 

  5. Irons, B., Tuck, R.: A version of the Aitken accelerator for computer implementation. Int. J. Numer. Methods Eng. 1, 275–277 (1969)

    Article  MATH  Google Scholar 

  6. Kinderlehrer, D., Stampacchia, G.: An Introduction To Variational Inequalities and their Applications. SIAM, Philadelphia (1980)

    MATH  Google Scholar 

  7. Küttler, U., Wall, W.A.: Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput. Mech. 42, 61–72 (2008)

    Article  MATH  Google Scholar 

  8. Lindau, B., Lorin, S., Lindkvist, L., Söderberg, R.: Efficient contact modeling in nonrigid variation simulation. ASME J. Comput. Inf. Sci. Eng. 16(1), 1–7 (2016)

    Article  Google Scholar 

  9. Lions, J.L., Stampacchia, G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–519 (1967)

    Article  MATH  Google Scholar 

  10. Lorin, S., Lindau, B., Lindkvist, L., Söderberg, R.: Efficient compliant variation simulation of spot-welded assemblies. ASME. J. Comput. Inf. Sci. Eng. 19(1), 011007 (2019)

    Article  Google Scholar 

  11. Lorin, S., Lindau, B., Tabar, R.S., Lindkvist, L., Wärmefjord, K., Söderberg, R.: Efficient variation simulation of spot-welded assemblies. In: ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 2, ASME (2018)

    Google Scholar 

  12. Lupuleac, S., Kovtun, M., Rodionova, O., Marguet, B.: Assembly simulation of riveting process. SAE Int. J. Aerosp. 2, 193–198 (2010)

    Article  Google Scholar 

  13. Lupuleac, S., Petukhova, M., Shinder, Y., Bretagnol, B.: Methodology for solving contact problem during riveting process. SAE Int. J. Aerosp. 4(2), 952–957 (2011)

    Article  Google Scholar 

  14. Lupuleac, S., Shinder, Y., Petukhova, M., Yakunin, S., Smirnov, A., Bondarenko, D.: Development of numerical methods for simulation of airframe assembly process. SAE Int. J. Aerosp. 6(1), 101–105 (2013)

    Article  Google Scholar 

  15. Lupuleac, S., Smirnov, A., Churilova, M., Shinder, J., Zaitseva, N., Bonhomme, E.: Simulation of body force impact on the assembly process of aircraft parts. In: ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers (2019)

    Google Scholar 

  16. Lupuleac, S., et al.: Simulation of the wing-to-fuselage assembly process. ASME. J. Manuf. Sci. Eng. 141(6), 061009 (2019)

    Article  Google Scholar 

  17. Oumaziz, P., Gosselet, P., Boucard, P.A., Abbas, M.: A parallel non-invasive multiscale strategy for the mixed domain decomposition method with frictional contact. Int. J. Numer. Methods Eng. 115, 1–14 (2018)

    Article  Google Scholar 

  18. Petukhova, M., Lupuleac, S., Shinder, Y., Smirnov, A., Yakunin, S., Bretagnol, B.: Numerical approach for airframe assembly simulation. J. Math. Ind. 4(8), 1–2 (2014)

    MathSciNet  Google Scholar 

  19. Pogarskaia, T., Churilova, M., Petukhova, M., Petukhov, E.: Simulation and optimization of aircraft assembly process using supercomputer technologies. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2018. CCIS, vol. 965, pp. 367–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05807-4_31

    Chapter  Google Scholar 

  20. Roulet, V., Champaney, L., Boucard, P.A.: A parallel strategy for the multiparametric analysis of structures with large contact and friction surfaces. Adv. Eng. Softw. 42(6), 347–368 (2011)

    Article  MATH  Google Scholar 

  21. Stefanova, M., et al.: Convex optimization techniques in compliant assembly simulation. Optim. Eng. 21, 1–26 (2020). https://doi.org/10.1007/s11081-020-09493-z

    Article  MathSciNet  MATH  Google Scholar 

  22. Turner, M.J., Clough, R.W.C., M.H., Topp, L.J.: Stiffness and deflection analysis of complex structures. J. Aero. Sci. 23, 805–823 (1956)

    Google Scholar 

  23. Vondrák, V., Dostal, Z., Dobiash, J., Ptak, S.: A FETI domain decomposition method applied to contact problems with large displacements. In: Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering XVI. LNCSE, vol. 55. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-34469-8_96

  24. Wriggers, C.P.: Computational Contact Mechanics. Springer Verlag, Heidelberg (2006). https://doi.org/10.1007/978-3-540-32609-0

    Book  MATH  Google Scholar 

  25. Wärmefjord, K., Söderberg, R., Lindau, B., Lindkvist, L., Lorin, S.: Joining in nonrigid variation simulation. In: Udroiu, R. (ed.) Computer-aided Technologies IntechOpen, London (2016)

    Google Scholar 

  26. Yang, D., Qu, W., Ke, Y.: Evaluation of residual clearance after pre-joining and pre-joining scheme optimization in aircraft panel assembly. Assem. Autom. 36(4), 376–387 (2016)

    Article  Google Scholar 

  27. Zaitseva, N., Lupuleac, S., Petukhova, M., Churilova, M., Pogarskaia, T., Stefanova, M.: High performance computing for aircraft assembly optimization. In: 2018 Global Smart Industry Conference (GloSIC), pp. 1–6. IEEE (2018)

    Google Scholar 

  28. Zaitseva, N., Pogarskaia, T., Minevich, O., Shinder, J., Bonhomme, E.: Simulation of aircraft assembly via ASRP software. Technical report, SAE Technical Paper (2019)

    Google Scholar 

Download references

Acknowledgments

The research was supported by Russian Science Foundation (project No. 22-19-00062, https://rscf.ru/en/project/22-19-00062/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Baklanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baklanov, S., Stefanova, M., Lupuleac, S., Shinder, J., Eliseev, A. (2022). Decomposition Method for Solving the Quadratic Programming Problem in the Aircraft Assembly Modeling. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V., Pospelov, I. (eds) Optimization and Applications. OPTIMA 2022. Lecture Notes in Computer Science, vol 13781. Springer, Cham. https://doi.org/10.1007/978-3-031-22543-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22543-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22542-0

  • Online ISBN: 978-3-031-22543-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics