Skip to main content

The Relative Formulation of the Quadratic Programming Problem in the Aircraft Assembly Modeling

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2022)

Abstract

Aircraft assembly modeling requires mass solving of quadratic programming (QP) problems. Thus, reducing the computation time becomes a very urgent task. Earlier [12], it was shown that a significant reduction in time can be achieved by reformulating the original QP problem in the so-called form of the relative QP problem. The current paper discusses the aspects of using relative QP problem related to the accuracy of the computations. Data preparation for the relative QP problem involves the matrix inversions. Since the Hessian in the considered QP problems is ill-conditioned, this operation leads to a rapid accumulation of roundoff errors. The paper proposes to use the error-free operations of addition and multiplication to increase the accuracy of the QP problem solution and to maintain high computation speed for QP problem solving. Finally, a comparison of the primal, dual, and relative QP problem formulations in terms of computation time and result accuracy for assembly problems is presented.

The research was supported by Russian Science Foundation (project No. 22-19-00062, https://rscf.ru/en/project/22-19-00062/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baklanov, S., Stefanova, M., Lupuleac, S.: Newton projection method as applied to assembly simulation. Optim. Methods Softw. (2020)

    Google Scholar 

  2. Bertsekas, D.P.: Projected Newton methods for optimization problems with simple constraints. SIAM J. Control Optim. 20(2), 221–246 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Goldfarb, D., Idnani, A.: A numerically stable dual method for solving strictly quadratic programs. Math. Program. 27(1), 1–33 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lorin, S., Lindau, B., Lindkvist, L., Söderberg, R.: Efficient compliant variation simulation of spot-welded assemblies. ASME J. Comput. Inf. Sci. Eng. 19(1), 011007 (2019)

    Article  Google Scholar 

  5. Lupuleac, S., Kovtun, M., Rodionova, O., Marguet, B.: Assembly simulation of riveting process. SAE Int. J. Aerosp. 2, 193–198 (2010)

    Article  Google Scholar 

  6. Lupuleac, S., et al.: Software complex for simulation of riveting process: Concept and applications. SAE Technical Paper, 2016-01-2090 (2016)

    Google Scholar 

  7. Ogita, T., Rump, S., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Comput. (SISC) 26, 1955–1988 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ogita, T., Oishi, S.: Accurate and robust inverse Cholesky factorization. Nonlinear theory and its applications. IEICE 3(1), 103–111 (2012)

    Google Scholar 

  9. Petukhova, M.V., Lupuleac, S.V., Shinder, Y.K., Smirnov, A.B., Yakunin, S.A., Bretagnol, B.: Numerical approach for airframe assembly simulation. J. Math. Ind. 4(8), 1–6 (2014)

    MathSciNet  Google Scholar 

  10. Powell, M.J.D.: On the quadratic programming algorithm of Goldfarb and Idnani. In: Cottle, R.W. (ed.) Mathematical programming essays in honor of George B. Dantzig, Part II of the Springer Mathematical Programming Studies book series, vol. 25, pp. 46–61. Springer, Berlin, Heidelberg (1985). https://doi.org/10.1007/BFb0121074

    Chapter  Google Scholar 

  11. Rump, S.M.: Inversion of extremely ill-conditioned matrices in floating-point. Japan J. Indust. Appl. Math. 26, 249–277 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Stefanova, M., et al.: Convex optimization techniques in compliant assembly simulation. Optim. Eng. 21(4), 1665–1690 (2020). https://doi.org/10.1007/s11081-020-09493-z

    Article  MathSciNet  MATH  Google Scholar 

  13. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-32609-0

    Book  MATH  Google Scholar 

  14. Yanagisawa, Y., Ogita, T., Oishi, S.: A modified algorithm for accurate inverse Cholesky factorization. Nonlinear Theory App. IEICE 5, 35–46 (2014)

    Article  MATH  Google Scholar 

  15. Yang, D., Qu, W., Ke, Y.: Evaluation of residual clearance after pre-joining and pre-joining scheme optimization in aircraft panel assembly. Assem. Autom. 36(4), 376–387 (2016)

    Article  Google Scholar 

  16. Zaitseva, N., Lupuleac, S., Petukhova, M., Churilova, M., Pogarskaia, T., Stefanova, M.: High performance computing for aircraft assembly optimization. In: 2018 Global Smart Industry Conference, pp. 1–6. IEEE, Chelyabinsk (2018)

    Google Scholar 

Download references

Acknowledgements

The research was supported by Russian Science Foundation (project No. 22-19-00062, https://rscf.ru/en/project/22-19-00062/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Stefanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stefanova, M., Baklanov, S. (2022). The Relative Formulation of the Quadratic Programming Problem in the Aircraft Assembly Modeling. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V., Pospelov, I. (eds) Optimization and Applications. OPTIMA 2022. Lecture Notes in Computer Science, vol 13781. Springer, Cham. https://doi.org/10.1007/978-3-031-22543-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22543-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22542-0

  • Online ISBN: 978-3-031-22543-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics