Skip to main content

Qualitative Analysis of an Infinite Horizon Optimal Control Problem of a Shallow Lake

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13781))

Included in the following conference series:

  • 353 Accesses

Abstract

This paper studies a classical infinite horizon optimal control problem for a shallow lake model and a variation thereof. We carry out a qualitative analysis of solutions to the canonical system and identify possible scenarios. Specifically, we describe a particular case that has not been addressed in the previous works. This case corresponds to the situation, when the canonical system has only two saddle equilibrium points without a source between them. Furthermore, the set of parameters, for which this situation occurs remains unchanged for two alternative formulations of the optimal control problem, which indicates a possibility for a hidden invariant structure. Both formulations of the optimal control problem are studied in detail, both analytically and numerically. The appearance of the Skiba point is discussed.

A part of this study was carried out while the first author was with the Faculty of Applied Mathematics and Control Processes, St. Petersburg State University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agliari, A., Vachadze, G.: Homoclinic and heteroclinic bifurcations in an overlapping generations model with credit market imperfection. Comput. Econ. 38(3), 241–260 (2011). https://doi.org/10.1007/s10614-011-9282-y

    Article  MATH  Google Scholar 

  2. Bikker, P., Uteshev, A.Y.: On the Bézout construction of the resultant. J. Symb. Comput. 28(1–2), 45–88 (1999). https://doi.org/10.1006/jsco.1999.0267

    Article  MATH  Google Scholar 

  3. Brock, W.A., Starrett, D.: Managing systems with non-convex positive feedback. Environ. Res. Econ. 26(4), 575–602 (2003). https://doi.org/10.1023/B:EARE.0000007350.11040.e3

    Article  Google Scholar 

  4. Caulkins, J.P., Feichtinger, G., Grass, D., Hartl, R.F., Kort, P.M., Seidl, A.: Skiba points in free end-time problems. J. Econ. Dyn. Control 51, 404–419 (2015). https://doi.org/10.1016/j.jedc.2014.11.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Grass, D., Caulkins, J.P., Feichtinger, G., Tragler, G., Behrens, D.A.: Optimal control of nonlinear processes: With Applications in Drugs, Corruption, and Terror. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77647-5

  6. Gromov, D., Castanos, F.: Sensitivity analysis of limit cycles in an alpha Stirling engine: a bifurcation-theory approach. SIAM J. Appl. Dyn. Syst. 19(3), 1865–1883 (2020). https://doi.org/10.1137/19M1299293

    Article  MathSciNet  MATH  Google Scholar 

  7. Gromov, D., Upmann, T.: Dynamics and economics of shallow lakes: a survey. Sustainability 13(24) (2021). https://doi.org/10.3390/su132413763

  8. Heijnen, P., Wagener, F.O.O.: Avoiding an ecological regime shift is sound economic policy. J. Econ. Dyn. Control 37(7), 1322–1341 (2013). https://doi.org/10.1016/j.jedc.2013.03.003

    Article  MathSciNet  MATH  Google Scholar 

  9. Janmaat, J.A.: Fishing in a shallow lake: exploring a classic fishery model in a habitat with shallow lake dynamics. Environ. Res. Econ. 51(2), 215–239 (2012). https://doi.org/10.1007/s10640-011-9495-5

    Article  Google Scholar 

  10. Kiseleva, T., Wagener, F.O.: Bifurcations of optimal vector fields in the shallow lake model. J. Econ. Dyn. Control 34(5), 825–843 (2010). https://doi.org/10.1016/j.jedc.2009.11.008

    Article  MathSciNet  MATH  Google Scholar 

  11. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4757-3978-7

    Book  MATH  Google Scholar 

  12. Mäler, K.G., Xepapadeas, A., De Zeeuw, A.: The economics of shallow lakes. Environ. Res. Econ. 26(4), 603–624 (2003). https://doi.org/10.1023/B:EARE.0000007351.99227.42

    Article  Google Scholar 

  13. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: Mathematical Theory of Optimal Processes. CRC Press, Boca Raton (1987)

    MATH  Google Scholar 

  14. Qi-Chang, Z., Wei, W., Wei-Yi, L.: Heteroclinic bifurcation of strongly nonlinear oscillator. Chin. Phys. Lett. 25(5), 1905 (2008). https://doi.org/10.1088/0256-307X/25/5/105

    Article  Google Scholar 

  15. Sethi, S.P.: Nearest feasible paths in optimal control problems: theory, examples, and counterexamples. J. Optim. Theory Appl. 23(4), 563–579 (1977). https://doi.org/10.1007/BF00933297

    Article  MathSciNet  MATH  Google Scholar 

  16. Skiba, A.K.: Optimal growth with a convex-concave production function. Econometrica: J. Econometric Soc., 527–539 (1978). https://doi.org/10.2307/1914229

  17. Wagener, F.O.O.: Skiba points and heteroclinic bifurcations, with applications to the shallow lake system. J. Econ. Dyn. Control 27(9), 1533–1561 (2003). https://doi.org/10.1016/S0165-1889(02)00070-2

    Article  MathSciNet  MATH  Google Scholar 

  18. de Zeeuw, A.: Regime shifts in resource management. Ann. Rev. Res. Econ. 6(1), 85–104 (2014). https://doi.org/10.1146/annurev-resource-100913-012405

    Article  Google Scholar 

Download references

Acknowledgements

We thank Prof. A. Yu. Uteshev for valuable hints regarding the polynomial analysis. The reported study was funded by RFBR and DFG, project number 21-51-12007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Gromov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gromov, D., Wu, Y. (2022). Qualitative Analysis of an Infinite Horizon Optimal Control Problem of a Shallow Lake. In: Olenev, N., Evtushenko, Y., Jaćimović, M., Khachay, M., Malkova, V., Pospelov, I. (eds) Optimization and Applications. OPTIMA 2022. Lecture Notes in Computer Science, vol 13781. Springer, Cham. https://doi.org/10.1007/978-3-031-22543-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22543-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22542-0

  • Online ISBN: 978-3-031-22543-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics