Skip to main content

Federated Learning-Based Intrusion Detection on Non-IID Data

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13777))

Abstract

Intrusion detection is an effective means to deal with network attacks. Currently, the commonly used detection methods are based on machine learning. However, traditional machine learning-based methods are centralized architectures that require uploading data to cloud servers, which face serious latency and data security issues. Federated learning (FL) can collaboratively train a machine learning model with good performance while the data is kept locally on the client, which can effectively make up for the shortcomings of the centralized architecture. Most of the current research on using FL methods in machine learning-based intrusion detection ideally consider the data to be independent and identically distributed (IID), which doesn’t conform to real scenarios. In the real world, due to the different environment of the client, the types of attacks contained in the data owned by each client may be different. Therefore, we study the effects of various non-independent and identically distribution (non-IID) settings on FL in detail and give specific partitioning methods. In addition, we also propose a FL data rebalancing method based on auxiliary classifier generative adversarial networks (ACGAN), which is experimentally validated on the UNSW-NB15 dataset. Experiments show that the proposed data augmentation method can well improve the impact of non-IID data on FL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayed, M.A., Talhi, C.: Federated learning for anomaly-based intrusion detection. In: 2021 International Symposium on Networks, Computers and Communications (ISNCC), pp. 1–8. IEEE (2021)

    Google Scholar 

  2. Campos, E.M., et al.: Evaluating federated learning for intrusion detection in internet of things: review and challenges. Comput. Netw. 108661 (2021)

    Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  4. Chen, G., Zheng, J., Yang, S., Zhou, J., Wu, W.: Fsafa-stacking2: an effective ensemble learning model for intrusion detection with firefly algorithm based feature selection. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds.) ICA3PP 2021. LNCS, vol. 13156, pp. 555–570. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-95388-1_37

    Chapter  Google Scholar 

  5. Chen, Z., Lv, N., Liu, P., Fang, Y., Chen, K., Pan, W.: Intrusion detection for wireless edge networks based on federated learning. IEEE Access 8, 217463–217472 (2020)

    Article  Google Scholar 

  6. Ding, J., Lin, F., Lv, S.: Temporal convolution network based on attention for intelligent anomaly detection of wind turbine blades. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds.) ICA3PP 2021. LNCS, vol. 13155, pp. 193–209. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-95384-3_13

    Chapter  Google Scholar 

  7. Duan, M., et al.: Astraea: self-balancing federated learning for improving classification accuracy of mobile deep learning applications. In: 2019 IEEE 37th International Conference on Computer Design (ICCD), pp. 246–254. IEEE (2019)

    Google Scholar 

  8. Hsu, T.M.H., Qi, H., Brown, M.: Measuring the effects of non-identical data distribution for federated visual classification. arXiv preprint arXiv:1909.06335 (2019)

  9. Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detection system. EAI Endorsed Trans. Secur. Saf. 3(9), e2 (2016)

    Google Scholar 

  10. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)

    Google Scholar 

  11. Kim, S., Cai, H., Hua, C., Gu, P., Xu, W., Park, J.: Collaborative anomaly detection for internet of things based on federated learning. In: 2020 IEEE/CIC International Conference on Communications in China (ICCC), pp. 623–628. IEEE (2020)

    Google Scholar 

  12. Liu, Y., et al.: Deep anomaly detection for time-series data in industrial IoT: a communication-efficient on-device federated learning approach. IEEE Internet Things J. 8(8), 6348–6358 (2020)

    Article  Google Scholar 

  13. Liu, Y., Kumar, N., Xiong, Z., Lim, W.Y.B., Kang, J., Niyato, D.: Communication-efficient federated learning for anomaly detection in industrial internet of things. In: GLOBECOM 2020–2020 IEEE Global Communications Conference, pp. 1–6. IEEE (2020)

    Google Scholar 

  14. Lv, P., Xie, L., Xu, J., Li, T.: Misbehavior detection in VANET based on federated learning and blockchain. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds.) ICA3PP 2021. LNCS, vol. 13157, pp. 52–64. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-95391-1_4

    Chapter  Google Scholar 

  15. Man, D., Zeng, F., Yang, W., Yu, M., Lv, J., Wang, Y.: Intelligent intrusion detection based on federated learning for edge-assisted internet of things. Secur. Commun. Netw. 2021 (2021)

    Google Scholar 

  16. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  17. Mothukuri, V., Khare, P., Parizi, R.M., Pouriyeh, S., Dehghantanha, A., Srivastava, G.: Federated learning-based anomaly detection for IoT security attacks. IEEE Internet Things J. (2021)

    Google Scholar 

  18. Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), pp. 1–6. IEEE (2015)

    Google Scholar 

  19. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: International Conference on Machine Learning, pp. 2642–2651. PMLR (2017)

    Google Scholar 

  20. Popoola, S.I., Ande, R., Adebisi, B., Gui, G., Hammoudeh, M., Jogunola, O.: Federated deep learning for zero-day botnet attack detection in IoT edge devices. IEEE Internet Things J. (2021)

    Google Scholar 

  21. Rahman, S.A., Tout, H., Talhi, C., Mourad, A.: Internet of things intrusion detection: centralized, on-device, or federated learning? IEEE Netw. 34(6), 310–317 (2020)

    Article  Google Scholar 

  22. Ren, G., Zhang, Y., Zhang, S., Long, H.: Edge DDoS attack detection method based on software defined networks. In: Lai, Y., Wang, T., Jiang, M., Xu, G., Liang, W., Castiglione, A. (eds.) ICA3PP 2021. LNCS, vol. 13155, pp. 597–611. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-95384-3_37

    Chapter  Google Scholar 

  23. Wang, H., Muñoz-González, L., Eklund, D., Raza, S.: Non-IID data re-balancing at IoT edge with peer-to-peer federated learning for anomaly detection. In: Proceedings of the 14th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 153–163 (2021)

    Google Scholar 

  24. Weinger, B., Kim, J., Sim, A., Nakashima, M., Moustafa, N., Wu, K.J.: Enhancing IoT anomaly detection performance for federated learning. Digit. Commun. Netw. (2022)

    Google Scholar 

  25. Yadav, K., Gupta, B., Hsu, C.H., Chui, K.T.: Unsupervised federated learning based IoT intrusion detection. In: 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), pp. 298–301. IEEE (2021)

    Google Scholar 

  26. Yurochkin, M., Agarwal, M., Ghosh, S., Greenewald, K., Hoang, N., Khazaeni, Y.: Bayesian nonparametric federated learning of neural networks. In: International Conference on Machine Learning, pp. 7252–7261. PMLR (2019)

    Google Scholar 

  27. Zhao, Y., Chen, J., Wu, D., Teng, J., Yu, S.: Multi-task network anomaly detection using federated learning. In: Proceedings of the Tenth International Symposium on Information and Communication Technology, pp. 273–279 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangjun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Wu, G., Zhang, W., Li, J. (2023). Federated Learning-Based Intrusion Detection on Non-IID Data. In: Meng, W., Lu, R., Min, G., Vaidya, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2022. Lecture Notes in Computer Science, vol 13777. Springer, Cham. https://doi.org/10.1007/978-3-031-22677-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22677-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22676-2

  • Online ISBN: 978-3-031-22677-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics