Skip to main content

Multi-initial-Center Federated Learning with Data Distribution Similarity-Aware Constraint

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13777))

Abstract

Federated Learning (FL) has recently attracted high attention since it allows clients to collaboratively train a model while the training data remains local. However, due to the inherent heterogeneity of local data distributions, the trained model usually fails to perform well on each client. Clustered FL has emerged to tackle this issue by clustering clients with similar data distributions. However, these model-dependent clustering methods tend to perform poorly and be costly. In this work, we propose a distribution similarity-based clustered federated learning framework FedDSMIC, which clusters clients by detecting the client-level underlying data distribution based on the model’s memory of training data. Furthermore, we extend the assumption about data distribution to a more realistic cluster structure. The center models are learned as good initial points to obtain common data properties in the cluster. Each client in a cluster gets a more personalized model by performing one step of gradient descent from the initial point. The empirical evaluation on real-world datasets shows that FedDSMIC outperforms popular state-of-the-art federated learning algorithms while keeping the lowest communication overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79(1), 151–175 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bezdek, J.C., Hathaway, R.J.: Some notes on alternating optimization. In: Pal, N.R., Sugeno, M. (eds.) AFSS 2002. LNCS (LNAI), vol. 2275, pp. 288–300. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45631-7_39

    Chapter  Google Scholar 

  3. Briggs, C., Fan, Z., Andras, P.: Federated learning with hierarchical clustering of local updates to improve training on non-IID data. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE (2020)

    Google Scholar 

  4. Caldarola, D., Mancini, M., Galasso, F., Ciccone, M., Rodolà, E., Caputo, B.: Cluster-driven graph federated learning over multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2749–2758 (2021)

    Google Scholar 

  5. Caldas, S., et al.: Leaf: a benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018)

  6. Chen, F., Luo, M., Dong, Z., Li, Z., He, X.: Federated meta-learning with fast convergence and efficient communication. arXiv preprint arXiv:1802.07876 (2018)

  7. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2921–2926. IEEE (2017)

    Google Scholar 

  8. Corinzia, L., Beuret, A., Buhmann, J.M.: Variational federated multi-task learning. arXiv preprint arXiv:1906.06268 (2019)

  9. Cortes, C., Mohri, M.: Domain adaptation and sample bias correction theory and algorithm for regression. Theoret. Comput. Sci. 519, 103–126 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fallah, A., Mokhtari, A., Ozdaglar, A.: On the convergence theory of gradient-based model-agnostic meta-learning algorithms. In: International Conference on Artificial Intelligence and Statistics, pp. 1082–1092. PMLR (2020)

    Google Scholar 

  11. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning with theoretical guarantees: a model-agnostic meta-learning approach. Adv. Neural. Inf. Process. Syst. 33, 3557–3568 (2020)

    Google Scholar 

  12. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  13. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3(4), 128–135 (1999)

    Article  Google Scholar 

  14. Ghosh, A., Chung, J., Yin, D., Ramchandran, K.: An efficient framework for clustered federated learning. Adv. Neural Inf. Process. Syst. 33, 19586–19597 (2020)

    Google Scholar 

  15. Hanzely, F., Richtárik, P.: Federated learning of a mixture of global and local models. arXiv preprint arXiv:2002.05516 (2020)

  16. Hsieh, K., Phanishayee, A., Mutlu, O., Gibbons, P.: The non-IID data quagmire of decentralized machine learning. In: International Conference on Machine Learning, pp. 4387–4398. PMLR (2020)

    Google Scholar 

  17. Huang, Y., et al.: Personalized cross-silo federated learning on non-IID data. In: AAAI, pp. 7865–7873 (2021)

    Google Scholar 

  18. Jiang, Y., Konečnỳ, J., Rush, K., Kannan, S.: Improving federated learning personalization via model agnostic meta learning. arXiv preprint arXiv:1909.12488 (2019)

  19. Kairouz, P., et al.: Advances and open problems in federated learning. Found. Trends® Mach. Learn. 14(1–2), 1–210 (2021)

    Google Scholar 

  20. Karimireddy, S.P., Kale, S., Mohri, M., Reddi, S., Stich, S., Suresh, A.T.: Scaffold: stochastic controlled averaging for federated learning. In: International Conference on Machine Learning, pp. 5132–5143. PMLR (2020)

    Google Scholar 

  21. Khodak, M., Balcan, M.F.F., Talwalkar, A.S.: Adaptive gradient-based meta-learning methods. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  22. Konečnỳ, J., McMahan, H.B., Yu, F.X., Richtárik, P., Suresh, A.T., Bacon, D.: Federated learning: strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016)

  23. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, University of Tront (2009)

    Google Scholar 

  24. Kulkarni, V., Kulkarni, M., Pant, A.: Survey of personalization techniques for federated learning. In: 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 794–797. IEEE (2020)

    Google Scholar 

  25. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  26. Li, T., Hu, S., Beirami, A., Smith, V.: Ditto: fair and robust federated learning through personalization. In: International Conference on Machine Learning, pp. 6357–6368. PMLR (2021)

    Google Scholar 

  27. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, methods, and future directions. IEEE Sig. Process. Mag. 37(3), 50–60 (2020)

    Article  Google Scholar 

  28. Li, T., Sahu, A.K., Zaheer, M., Sanjabi, M., Talwalkar, A., Smith, V.: Federated optimization in heterogeneous networks. Proc. Mach. Learn. Syst. 2, 429–450 (2020)

    Google Scholar 

  29. Mansour, Y., Mohri, M., Ro, J., Suresh, A.T.: Three approaches for personalization with applications to federated learning. arXiv preprint arXiv:2002.10619 (2020)

  30. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: learning bounds and algorithms. arXiv preprint arXiv:0902.3430 (2009)

  31. Marfoq, O., Neglia, G., Bellet, A., Kameni, L., Vidal, R.: Federated multi-task learning under a mixture of distributions. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  32. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Psychology of Learning and Motivation, vol. 24, pp. 109–165. Elsevier (1989)

    Google Scholar 

  33. McMahan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Artificial intelligence and statistics, pp. 1273–1282. PMLR (2017)

    Google Scholar 

  34. Mohri, M., Sivek, G., Suresh, A.T.: Agnostic federated learning. In: International Conference on Machine Learning, pp. 4615–4625. PMLR (2019)

    Google Scholar 

  35. Nayak, G.K., Mopuri, K.R., Shaj, V., Radhakrishnan, V.B., Chakraborty, A.: Zero-shot knowledge distillation in deep networks. In: International Conference on Machine Learning, pp. 4743–4751. PMLR (2019)

    Google Scholar 

  36. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  37. Sarkar, S., Ghosh, A.K.: On perfect clustering of high dimension, low sample size data. IEEE Trans. Pattern Anal. Mach. Intell. 42(9), 2257–2272 (2019)

    Article  Google Scholar 

  38. Sattler, F., Müller, K.R., Samek, W.: Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints. IEEE Trans. Neural Netw. Learn. Syst. 32(8), 3710–3722 (2020)

    Article  MathSciNet  Google Scholar 

  39. Smith, V., Chiang, C.K., Sanjabi, M., Talwalkar, A.S.: Federated multi-task learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  40. Wang, H., Yurochkin, M., Sun, Y., Papailiopoulos, D., Khazaeni, Y.: Federated learning with matched averaging. arXiv preprint arXiv:2002.06440 (2020)

  41. Wang, K., Mathews, R., Kiddon, C., Eichner, H., Beaufays, F., Ramage, D.: Federated evaluation of on-device personalization. arXiv preprint arXiv:1910.10252 (2019)

  42. Xie, M., et al.: Multi-center federated learning. arXiv preprint arXiv:2108.08647 (2021)

  43. Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4320–4328 (2018)

    Google Scholar 

  44. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., Chandra, V.: Federated learning with non-IID data. arXiv preprint arXiv:1806.00582 (2018)

  45. Zhou, Z., Chu, L., Liu, C., Wang, L., Pei, J., Zhang, Y.: Towards fair federated learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4100–4101 (2021)

    Google Scholar 

  46. Zhu, Z., Hong, J., Zhou, J.: Data-free knowledge distillation for heterogeneous federated learning. In: International Conference on Machine Learning, pp. 12878–12889. PMLR (2021)

    Google Scholar 

Download references

Acknowledgments

This work is supported by The National Key Research and Development Program of China No. 2021YFB3101400 and the Strategic Priority Research Program of Chinese Academy of Sciences, Grant No. XDC02040400.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Chen, X., Wang, S., Ding, Y., Li, K. (2023). Multi-initial-Center Federated Learning with Data Distribution Similarity-Aware Constraint. In: Meng, W., Lu, R., Min, G., Vaidya, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2022. Lecture Notes in Computer Science, vol 13777. Springer, Cham. https://doi.org/10.1007/978-3-031-22677-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22677-9_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22676-2

  • Online ISBN: 978-3-031-22677-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics