Abstract
Lane-change sensing is one of the fundamental requirements to enable autonomous driving and safety-critical Intelligent Transportation System (ITS) applications. This work presents a deep-learning approach for detecting the lane changing of vehicles using onboard smartphone, aiming at achieving low-cost and scalable sensing and complementing computer vision-based solutions in special traffic conditions such as heavy fog weather. Specifically, we first present a lane-change sensing framework based on accelerometer and gyroscope readings from the onboard smartphone, which supports offline trajectory data collection and training, as well as online real-time lane-change sensing. Second, in light of the fact that Temporal Convolutional Network (TCN) is computational-efficiency for sequential tasks, we propose a TCN-based Lane-Change Sensing (TCN-LCS) algorithm, which consists of a dynamic sequence length adaptation method for offline training, and a sliding window inference strategy for online inference. Finally, we build the system prototype and give an extensive performance evaluation in real-world traffic environments. The experimental results conclusively demonstrate the feasibility and efficiency of the proposed framework and solution.
This work was supported in part by the National Natural Science Foundation of China under Grant No. 62172064, the Chongqing Young-Talent Program (Project No. cstc2022ycjh-bgzxm0039), the Venture & Innovation Support Program for Chongqing Overseas Returnees (Project No. cx2021063) and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No.KJQN202100637).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)
Bhandari, R., Nambi, A.U., Padmanabhan, V.N., Raman, B.: Driving lane detection on smartphones using deep neural networks. ACM Trans. Sens. Netw. 16(1), 1–22 (2020). https://doi.org/10.1145/3358797
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953
Chen, D., Cho, K.T., Han, S., Jin, Z., Shin, K.G.: Invisible sensing of vehicle steering with smartphones. In: Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 1–13 (2015). https://doi.org/10.1145/2742647.2742659
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
Jin, F., et al.: Toward scalable and robust indoor tracking: design, implementation, and evaluation. IEEE Internet Things J. 7(2), 1192–1204 (2020). https://doi.org/10.1109/JIOT.2019.2953376
Jin, F., Liu, K., Zhang, H., Wu, W., Cao, J., Zhai, X.: A zero site-survey overhead indoor tracking system using particle filter. In: 2019 IEEE International Conference on Communications (ICC), pp. 1–7 (2019). https://doi.org/10.1109/ICC.2019.8761621
Klitzke, L., Koch, C., Köster, F.: Identification of lane-change maneuvers in real-world drivings with hidden markov model and dynamic time warping. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–7 (2020). https://doi.org/10.1109/ITSC45102.2020.9294481
Lee, D., Kwon, Y.P., McMains, S., Hedrick, J.K.: Convolution neural network-based lane change intention prediction of surrounding vehicles for ACC. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6 (2017). https://doi.org/10.1109/ITSC.2017.8317874
Liu, K., Lim, H.B., Frazzoli, E., Ji, H., Lee, V.C.S.: Improving positioning accuracy using GPS pseudorange measurements for cooperative vehicular localization. IEEE Trans. Veh. Technol. 63(6), 2544–2556 (2014). https://doi.org/10.1109/TVT.2013.2296071
Liu, K., et al.: Toward low-overhead fingerprint-based indoor localization via transfer learning: design, implementation, and evaluation. IEEE Trans. Ind. Inform. 14(3), 898–908 (2018). https://doi.org/10.1109/TII.2017.2750240
Maaref, M., Khalife, J., Kassas, Z.M.: Lane-level localization and mapping in GNSS-challenged environments by fusing lidar data and cellular pseudoranges. IEEE Trans. Intell. Veh. 4(1), 73–89 (2019). https://doi.org/10.1109/TIV.2018.2886688
Ouyang, Z., Niu, J., Liu, Y., Rodrigues, J.: Multiwave: a novel vehicle steering pattern detection method based on smartphones. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–7 (2016). https://doi.org/10.1109/ICC.2016.7511088
Park, S.G., Cho, D.J.: Smart framework for GNSS-based navigation in urban environments. Int. J. Satell. Commun. Network. 35(2), 123–137 (2017). https://doi.org/10.1002/sat.1166
Schlechtriemen, J., Wedel, A., Hillenbrand, J., Breuel, G., Kuhnert, K.D.: A lane change detection approach using feature ranking with maximized predictive power. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings (IV), pp. 108–114 (2014). https://doi.org/10.1109/IVS.2014.6856491
Schreiber, M., Königshof, H., Hellmund, A.M., Stiller, C.: Vehicle localization with tightly coupled GNSS and visual odometry. In: 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 858–863 (2016). https://doi.org/10.1109/IVS.2016.7535488
Shahverdy, M., Fathy, M., Berangi, R., Sabokrou, M.: Driver behavior detection and classification using deep convolutional neural networks. Expert Syst. Appl. 149, 113240 (2020). https://doi.org/10.1016/j.eswa.2020.113240
Wang, T., Jia, W., Xing, G., Li, M.: Exploiting statistical mobility models for efficient Wi-Fi deployment. IEEE Trans. Veh. Technol. 62(1), 360–373 (2013). https://doi.org/10.1109/TVT.2012.2217159
Wang, T., et al.: Propagation modeling and defending of a mobile sensor worm in wireless sensor and actuator networks. Sensors 17(1), 139 (2017). https://doi.org/10.3390/s17010139
Wei, Z., Wang, C., Hao, P., Barth, M.J.: Vision-based lane-changing behavior detection using deep residual neural network. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3108–3113 (2019). https://doi.org/10.1109/ITSC.2019.8917158
Wirthmüller, F., Klimke, M., Schlechtriemen, J., Hipp, J., Reichert, M.: Predicting the time until a vehicle changes the lane using LSTM-based recurrent neural networks. IEEE Robot. Autom. Lett. 6(2), 2357–2364 (2021). https://doi.org/10.1109/LRA.2021.3058930
Woo, H., et al.: Lane-change detection based on vehicle-trajectory prediction. IEEE Robot. Autom. Lett. 2(2), 1109–1116 (2017). https://doi.org/10.1109/LRA.2017.2660543
Xu, X., Yu, J., Zhu, Y., Wu, Z., Li, J., Li, M.: Leveraging smartphones for vehicle lane-level localization on highways. IEEE Trans. Mob. Comput. 17(8), 1894–1907 (2018). https://doi.org/10.1109/TMC.2017.2776286
Yi, S., Worrall, S., Nebot, E.: Integrating vision, lidar and GPS localization in a behavior tree framework for urban autonomous driving. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3774–3780 (2021). https://doi.org/10.1109/ITSC48978.2021.9564875
Zhang, H., Liu, K., Jin, F., Feng, L., Lee, V., Ng, J.: A scalable indoor localization algorithm based on distance fitting and fingerprint mapping in Wi-Fi environments. Neural Comput. Appl. 32(9), 5131–5145 (2019). https://doi.org/10.1007/s00521-018-3961-8
Zhang, H., et al.: Dual-band wi-fi based indoor localization via stacked denosing autoencoder. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2019). https://doi.org/10.1109/GLOBECOM38437.2019.9013872
Zheng, Y., Hansen, J.H.L.: Lane-change detection from steering signal using spectral segmentation and learning-based classification. IEEE Trans. Intell. Veh. 2(1), 14–24 (2017). https://doi.org/10.1109/TIV.2017.2708600
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, J. et al. (2023). Effective Vehicle Lane-Change Sensing Using Onboard Smartphone Based on Temporal Convolutional Network. In: Meng, W., Lu, R., Min, G., Vaidya, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2022. Lecture Notes in Computer Science, vol 13777. Springer, Cham. https://doi.org/10.1007/978-3-031-22677-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-22677-9_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22676-2
Online ISBN: 978-3-031-22677-9
eBook Packages: Computer ScienceComputer Science (R0)