Skip to main content

Effective Vehicle Lane-Change Sensing Using Onboard Smartphone Based on Temporal Convolutional Network

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13777))

  • 1906 Accesses

Abstract

Lane-change sensing is one of the fundamental requirements to enable autonomous driving and safety-critical Intelligent Transportation System (ITS) applications. This work presents a deep-learning approach for detecting the lane changing of vehicles using onboard smartphone, aiming at achieving low-cost and scalable sensing and complementing computer vision-based solutions in special traffic conditions such as heavy fog weather. Specifically, we first present a lane-change sensing framework based on accelerometer and gyroscope readings from the onboard smartphone, which supports offline trajectory data collection and training, as well as online real-time lane-change sensing. Second, in light of the fact that Temporal Convolutional Network (TCN) is computational-efficiency for sequential tasks, we propose a TCN-based Lane-Change Sensing (TCN-LCS) algorithm, which consists of a dynamic sequence length adaptation method for offline training, and a sliding window inference strategy for online inference. Finally, we build the system prototype and give an extensive performance evaluation in real-world traffic environments. The experimental results conclusively demonstrate the feasibility and efficiency of the proposed framework and solution.

This work was supported in part by the National Natural Science Foundation of China under Grant No. 62172064, the Chongqing Young-Talent Program (Project No. cstc2022ycjh-bgzxm0039), the Venture & Innovation Support Program for Chongqing Overseas Returnees (Project No. cx2021063) and the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No.KJQN202100637).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271 (2018)

  2. Bhandari, R., Nambi, A.U., Padmanabhan, V.N., Raman, B.: Driving lane detection on smartphones using deep neural networks. ACM Trans. Sens. Netw. 16(1), 1–22 (2020). https://doi.org/10.1145/3358797

    Article  Google Scholar 

  3. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002). https://doi.org/10.1613/jair.953

    Article  MATH  Google Scholar 

  4. Chen, D., Cho, K.T., Han, S., Jin, Z., Shin, K.G.: Invisible sensing of vehicle steering with smartphones. In: Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services (MobiSys), pp. 1–13 (2015). https://doi.org/10.1145/2742647.2742659

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  6. Jin, F., et al.: Toward scalable and robust indoor tracking: design, implementation, and evaluation. IEEE Internet Things J. 7(2), 1192–1204 (2020). https://doi.org/10.1109/JIOT.2019.2953376

    Article  Google Scholar 

  7. Jin, F., Liu, K., Zhang, H., Wu, W., Cao, J., Zhai, X.: A zero site-survey overhead indoor tracking system using particle filter. In: 2019 IEEE International Conference on Communications (ICC), pp. 1–7 (2019). https://doi.org/10.1109/ICC.2019.8761621

  8. Klitzke, L., Koch, C., Köster, F.: Identification of lane-change maneuvers in real-world drivings with hidden markov model and dynamic time warping. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–7 (2020). https://doi.org/10.1109/ITSC45102.2020.9294481

  9. Lee, D., Kwon, Y.P., McMains, S., Hedrick, J.K.: Convolution neural network-based lane change intention prediction of surrounding vehicles for ACC. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6 (2017). https://doi.org/10.1109/ITSC.2017.8317874

  10. Liu, K., Lim, H.B., Frazzoli, E., Ji, H., Lee, V.C.S.: Improving positioning accuracy using GPS pseudorange measurements for cooperative vehicular localization. IEEE Trans. Veh. Technol. 63(6), 2544–2556 (2014). https://doi.org/10.1109/TVT.2013.2296071

    Article  Google Scholar 

  11. Liu, K., et al.: Toward low-overhead fingerprint-based indoor localization via transfer learning: design, implementation, and evaluation. IEEE Trans. Ind. Inform. 14(3), 898–908 (2018). https://doi.org/10.1109/TII.2017.2750240

    Article  Google Scholar 

  12. Maaref, M., Khalife, J., Kassas, Z.M.: Lane-level localization and mapping in GNSS-challenged environments by fusing lidar data and cellular pseudoranges. IEEE Trans. Intell. Veh. 4(1), 73–89 (2019). https://doi.org/10.1109/TIV.2018.2886688

    Article  Google Scholar 

  13. Ouyang, Z., Niu, J., Liu, Y., Rodrigues, J.: Multiwave: a novel vehicle steering pattern detection method based on smartphones. In: 2016 IEEE International Conference on Communications (ICC), pp. 1–7 (2016). https://doi.org/10.1109/ICC.2016.7511088

  14. Park, S.G., Cho, D.J.: Smart framework for GNSS-based navigation in urban environments. Int. J. Satell. Commun. Network. 35(2), 123–137 (2017). https://doi.org/10.1002/sat.1166

    Article  Google Scholar 

  15. Schlechtriemen, J., Wedel, A., Hillenbrand, J., Breuel, G., Kuhnert, K.D.: A lane change detection approach using feature ranking with maximized predictive power. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings (IV), pp. 108–114 (2014). https://doi.org/10.1109/IVS.2014.6856491

  16. Schreiber, M., Königshof, H., Hellmund, A.M., Stiller, C.: Vehicle localization with tightly coupled GNSS and visual odometry. In: 2016 IEEE Intelligent Vehicles Symposium (IV), pp. 858–863 (2016). https://doi.org/10.1109/IVS.2016.7535488

  17. Shahverdy, M., Fathy, M., Berangi, R., Sabokrou, M.: Driver behavior detection and classification using deep convolutional neural networks. Expert Syst. Appl. 149, 113240 (2020). https://doi.org/10.1016/j.eswa.2020.113240

    Article  Google Scholar 

  18. Wang, T., Jia, W., Xing, G., Li, M.: Exploiting statistical mobility models for efficient Wi-Fi deployment. IEEE Trans. Veh. Technol. 62(1), 360–373 (2013). https://doi.org/10.1109/TVT.2012.2217159

    Article  Google Scholar 

  19. Wang, T., et al.: Propagation modeling and defending of a mobile sensor worm in wireless sensor and actuator networks. Sensors 17(1), 139 (2017). https://doi.org/10.3390/s17010139

    Article  Google Scholar 

  20. Wei, Z., Wang, C., Hao, P., Barth, M.J.: Vision-based lane-changing behavior detection using deep residual neural network. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3108–3113 (2019). https://doi.org/10.1109/ITSC.2019.8917158

  21. Wirthmüller, F., Klimke, M., Schlechtriemen, J., Hipp, J., Reichert, M.: Predicting the time until a vehicle changes the lane using LSTM-based recurrent neural networks. IEEE Robot. Autom. Lett. 6(2), 2357–2364 (2021). https://doi.org/10.1109/LRA.2021.3058930

    Article  Google Scholar 

  22. Woo, H., et al.: Lane-change detection based on vehicle-trajectory prediction. IEEE Robot. Autom. Lett. 2(2), 1109–1116 (2017). https://doi.org/10.1109/LRA.2017.2660543

    Article  Google Scholar 

  23. Xu, X., Yu, J., Zhu, Y., Wu, Z., Li, J., Li, M.: Leveraging smartphones for vehicle lane-level localization on highways. IEEE Trans. Mob. Comput. 17(8), 1894–1907 (2018). https://doi.org/10.1109/TMC.2017.2776286

    Article  Google Scholar 

  24. Yi, S., Worrall, S., Nebot, E.: Integrating vision, lidar and GPS localization in a behavior tree framework for urban autonomous driving. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3774–3780 (2021). https://doi.org/10.1109/ITSC48978.2021.9564875

  25. Zhang, H., Liu, K., Jin, F., Feng, L., Lee, V., Ng, J.: A scalable indoor localization algorithm based on distance fitting and fingerprint mapping in Wi-Fi environments. Neural Comput. Appl. 32(9), 5131–5145 (2019). https://doi.org/10.1007/s00521-018-3961-8

    Article  Google Scholar 

  26. Zhang, H., et al.: Dual-band wi-fi based indoor localization via stacked denosing autoencoder. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2019). https://doi.org/10.1109/GLOBECOM38437.2019.9013872

  27. Zheng, Y., Hansen, J.H.L.: Lane-change detection from steering signal using spectral segmentation and learning-based classification. IEEE Trans. Intell. Veh. 2(1), 14–24 (2017). https://doi.org/10.1109/TIV.2017.2708600

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, J. et al. (2023). Effective Vehicle Lane-Change Sensing Using Onboard Smartphone Based on Temporal Convolutional Network. In: Meng, W., Lu, R., Min, G., Vaidya, J. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2022. Lecture Notes in Computer Science, vol 13777. Springer, Cham. https://doi.org/10.1007/978-3-031-22677-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22677-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22676-2

  • Online ISBN: 978-3-031-22677-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics