Abstract
The high variations across images make image classification a challenging task, where the limited number of training instances further increases the difficulty of achieving good generalization performance. Applying ensemble learning to classification often yields better generalization results on unseen data than using a single classifier. However, for an ensemble to generalize properly, its base learners should be accurate and diverse. Genetic programming (GP) has achieved promising results in image classification. However, existing methods typically employ single-tree representation (i.e., an individual contains a single tree) and are not easy to evolve multiple base learners especially when only limited training data is available. This paper proposes a new ensemble construction method for image classification using multi-objective multi-tree GP (i.e., on individual contains multiple trees). In the new method, a GP individual forms an ensemble, and its multiple trees are base learners that can learn informative features from a relatively small number of training instances. To find effective GP individuals/ensembles, i.e., to make its multiple trees accurate and diverse, the proposed method formulates the ensemble learning problem as a multi-objective task explicitly. Thus, the new objective functions are developed to maximize the diversity and minimize the classification error simultaneously. The proposed method achieves significantly better generalization performance than many competitive methods on four datasets of varying difficulty. Further analysis demonstrates the effectiveness and potentially high interpretability of the constructed ensembles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atkins, D., Neshatian, K., Zhang, M.: A domain independent genetic programming approach to automatic feature extraction for image classification. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp. 238ā245 (2011)
Bi, Y., Xue, B., Zhang, M.: Genetic Programming for Image Classification: An Automated Approach to Feature Learning. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-65927-1
Bi, Y., Xue, B., Zhang, M.: Genetic programming with a new representation to automatically learn features and evolve ensembles for image classification. IEEE Trans. Cybern. 51(4), 1769ā1783 (2021)
Bi, Y., Xue, B., Zhang, M.: Genetic programming with image-related operators and a flexible program structure for feature learning in image classification. IEEE Trans. Evol. Comput. 25(1), 87ā101 (2021)
Chandra, A., Yao, X.: Ensemble learning using multi-objective evolutionary algorithms. J. Math. Model. Algor. 5(4), 417ā445 (2006)
Chen, H., Yao, X.: Multiobjective neural network ensembles based on regularized negative correlation learning. IEEE Trans. Knowl. Data Eng. 22(12), 1738ā1751 (2010)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGAII. IEEE Trans. Evol. Comput. 6(2), 182ā197 (2002)
Fan, Q., Bi, Y., Xue, B., Zhang, M.: Genetic programming for image classification: a new program representation with flexible feature reuse. IEEE Trans. Evol. Comput. (2022). https://doi.org/10.1109/TEVC.2022.3169490
Fortin, F.A., Rainville, F.M.D., Gardner, M.A., Parizeau, M., GagnĆ©, C.: Deap: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(70), 2171ā2175 (2012)
Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(4), 463ā484 (2012)
Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314ā1324 (2019)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4(2), 87ā112 (1994)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278ā2324 (1998)
Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684ā698 (2005)
Lensen, A., Xue, B., Zhang, M.: Generating redundant features with unsupervised multi-tree genetic programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., GarcĆa-SĆ”nchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 84ā100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77553-1_6
Lensen, A., Xue, B., Zhang, M.: Genetic programming for evolving similarity functions for clustering: Representations and analysis. Evol. Comput. 28(4), 531ā561 (2020)
Lu, H., Gao, H., Ye, M., Wang, X.: A hybrid ensemble algorithm combining adaboost and genetic algorithm for cancer classification with gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinf. 18(3), 863ā870 (2021)
Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199ā230 (1995)
Ojala, T., Maenpaa, T., Pietikainen, M., Viertola, J., Kyllonen, J., Huovinen, S.: Outex-new framework for empirical evaluation of texture analysis algorithms. In: Object Recognition Supported by User Interaction for Service Robots, vol. 1, pp. 701ā706. IEEE (2002)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(85), 2825ā2830 (2011)
Pooja, S., Balan, R.S., Anisha, M., Muthukumaran, M., Jothikumar, R.: Techniques tanimoto correlated feature selection system and hybridization of clustering and boosting ensemble classification of remote sensed big data for weather forecasting. Comput. Commun. 151, 266ā274 (2020)
Ruberto, S., Terragni, V., Moore, J.H.: Image feature learning with genetic programming. In: BƤck, T., et al. (eds.) PPSN 2020. LNCS, vol. 12270, pp. 63ā78. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58115-2_5
Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213ā226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16
Shao, L., Liu, L., Li, X.: Feature learning for image classification via multiobjective genetic programming. IEEE Trans. Neural Netw. Learn. Syst. 25(7), 1359ā1371 (2014)
Young, S., Abdou, T., Bener, A.: Deep super learner: a deep ensemble for classification problems. In: Bagheri, E., Cheung, J.C.K. (eds.) Canadian AI 2018. LNCS (LNAI), vol. 10832, pp. 84ā95. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89656-4_7
Zhang, B., et al.: Intelligent gp fusion from multiple sources for text classification. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management, pp. 477ā484 (2005)
Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. CRC Press, Boca Raton (2012)
Zhou, Z.H., Feng, J.: Deep forest. Natl. Sci. Rev. 6(1), 74ā86 (2018)
Zhu, H., Jin, Y.: Real-time federated evolutionary neural architecture search. IEEE Trans. Evol. Comput. 26(2), 364ā378 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fan, Q., Bi, Y., Xue, B., Zhang, M. (2022). Evolving Effective Ensembles for Image Classification Using Multi-objective Multi-tree Genetic Programming. In: Aziz, H., CorrĆŖa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-22695-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22694-6
Online ISBN: 978-3-031-22695-3
eBook Packages: Computer ScienceComputer Science (R0)