Skip to main content

Active Learning for kNN Using Instance Impact

  • Conference paper
  • First Online:
AI 2022: Advances in Artificial Intelligence (AI 2022)

Abstract

Labelling unlabeled data is a time-consuming and expensive process. Labelling initiatives should select samples that are likely to enhance the classification accuracy of the classifier. Several methods can be employed to accomplish this goal. One of these techniques is to select samples with the highest level of uncertainty in their predicted labels. Experts then label these samples. Another option is to choose samples at random. This paper proposes three methods for identifying unlabeled samples to improve predictive accuracy when they are labelled. Our study explores how to select samples when we have very few labelled samples available from manifold distributed data sets. In order to assess performance, we have compared our approaches with uncertainty sampling and random sampling. We demonstrate that our methods outperform uncertainty sampling and random sampling by using public and real-world data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altmann, J.: Observational study of behavior: sampling methods. Behaviour 49(3–4), 227–266 (1974)

    Article  Google Scholar 

  2. Bestmann, S., et al.: Influence of uncertainty and surprise on human corticospinal excitability during preparation for action. Curr. Biol. 18(10), 775–780 (2008)

    Article  Google Scholar 

  3. Cao, L., Zhu, C.: Personalized next-best action recommendation with multi-party interaction learning for automated decision-making. arXiv preprint arXiv:2108.08846 (2021)

  4. Dunn, E., Frahm, J.M.: Next best view planning for active model improvement. In: BMVC, pp. 1–11 (2009)

    Google Scholar 

  5. Etikan, I., Bala, K.: Sampling and sampling methods. Biomet. Biostatist. Int. J. 5(6), 00149 (2017)

    Google Scholar 

  6. Fraboni, Y., Vidal, R., Kameni, L., Lorenzi, M.: Clustered sampling: low-variance and improved representativity for clients selection in federated learning. arXiv preprint arXiv:2105.05883 (2021)

  7. Giraud-Carrier, C.: A note on the utility of incremental learning. AI Commun. 13(4), 215–223 (2000)

    MATH  Google Scholar 

  8. Goodman, L.A.: Snowball sampling. Ann. Math. Statist. 32, 148–170 (1961)

    Article  MATH  Google Scholar 

  9. Jenkinson, A.: What happened to strategic segmentation? J. Direct Data Digit. Mark. Pract. 11(2), 124–139 (2009)

    Article  Google Scholar 

  10. Kramer-Schadt, S., et al.: The importance of correcting for sampling bias in maxent species distribution models. Divers. Distrib. 19(11), 1366–1379 (2013)

    Google Scholar 

  11. Lughofer, E.: Hybrid active learning for reducing the annotation effort of operators in classification systems. Pattern Recogn. 45(2), 884–896 (2012)

    Article  Google Scholar 

  12. Madow, W.G., Madow, L.H.: On the theory of systematic sampling, I. Ann. Math. Stat. 15(1), 1–24 (1944)

    Article  MATH  Google Scholar 

  13. Moser, C.A.: Quota sampling. J. R. Statist. Soc. Ser. A (General) 115(3), 411–423 (1952)

    Article  Google Scholar 

  14. Neyman, J.: On the two different aspects of the representative method: the method of stratified sampling and the method of purposive selection. In: Kotz, S., Johnson, N.L. (eds.) Breakthroughs in Statistics, pp. 123–150. Springer Series in Statistics. Springer, New York, NY (1992). https://doi.org/10.1007/978-1-4612-4380-9_12

  15. Olken, F.: Random sampling from databases. Ph.D. thesis, University of California, Berkeley (1993)

    Google Scholar 

  16. Rubens, N., Kaplan, D., Sugiyama, M.: Active learning in recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 735–767. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-85820-3_23

    Chapter  Google Scholar 

  17. Sedgwick, P.: Convenience sampling. BMJ. 347, 1–2 (2013)

    Article  Google Scholar 

  18. Settles, B.: Active learning literature survey (2009)

    Google Scholar 

  19. Shi, W., Gong, Y., Ding, C., Ma, Z., Tao, X., Zheng, N.: Transductive semi-supervised deep learning using min-max features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 311–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_19

    Chapter  Google Scholar 

  20. Syed, N.A., Liu, H., Sung, K.K.: Incremental learning with support vector machines (1999)

    Google Scholar 

  21. Syfert, M.M., Smith, M.J., Coomes, D.A.: The effects of sampling bias and model complexity on the predictive performance of maxent species distribution models. PLoS ONE 8(2), e55158 (2013)

    Article  Google Scholar 

  22. Tokdar, S.T., Kass, R.E.: Importance sampling: a review. Wiley Interdiscipl. Rev. Comput. Statist. 2(1), 54–60 (2010)

    Article  Google Scholar 

  23. Van Amersfoort, J., Smith, L., Teh, Y.W., Gal, Y.: Uncertainty estimation using a single deep deterministic neural network. In: International Conference on Machine Learning, pp. 9690–9700. PMLR (2020)

    Google Scholar 

  24. Yang, B., Sun, J.T., Wang, T., Chen, Z.: Effective multi-label active learning for text classification. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 917–926 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayed Waleed Qayyumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qayyumi, S.W., Park, L.A.F., Obst, O. (2022). Active Learning for kNN Using Instance Impact. In: Aziz, H., Corrêa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22695-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22694-6

  • Online ISBN: 978-3-031-22695-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics