Skip to main content

EDE-NAS: An Eclectic Differential Evolution Approach to Single-Path Neural Architecture Search

  • Conference paper
  • First Online:
AI 2022: Advances in Artificial Intelligence (AI 2022)

Abstract

Convolutional neural networks (CNNs) are a very prevalent and powerful deep learning paradigm. In recent years, many neural architecture search (NAS) methods have been developed to automate the design process of CNN architectures, significantly reducing human effort. Among various search techniques, differential evolution (DE), as a popular evolutionary computation algorithm, has advantages of fewer control variables, fast convergence and powerful optimization capability. However, existing DE-based NAS methods simply use conventional search operators, and do not consider the global and local information in the search process well, thus failing to achieve satisfactory results. In this paper, we propose an eclectic DE approach for NAS that can make good use of the search capability of DE. The architectural parameters are encoded into two parts according to their ranges. A discrete mutation operator is proposed to evolve the part that has a small search space, while a versatile mutation operator is devised for the other part with a large search space. The proposed DE algorithm can well balance the global and local search, and yields better overall results than most compared methods with a single-path CNN architecture design based on basic operations on four benchmark image classification datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Awad, N., Mallik, N., Hutter, F.: Differential evolution for neural architecture search. arXiv preprint arXiv:2012.06400 (2020)

  2. Bäck, T., Fogel, D.B., Michalewicz, Z.: Handbook of evolutionary computation. Release 97(1), B1 (1997)

    MATH  Google Scholar 

  3. Baymurzina, D., Golikov, E., Burtsev, M.: A review of neural architecture search. Neurocomputing 474, 82–93 (2022). https://doi.org/10.1016/j.neucom.2021.12.014

    Article  Google Scholar 

  4. Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MATH  Google Scholar 

  5. Ding, X., Zhang, X., Ma, N., Han, J., Ding, G., Sun, J.: RepVGG: making VGG-style convnets great again. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13733–13742 (2021)

    Google Scholar 

  6. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach. Learn. Res. 20(1), 1997–2017 (2019)

    MATH  Google Scholar 

  7. Gämperle, R., Müller, S.D., Koumoutsakos, P.: A parameter study for differential evolution. Adv. Intell. Syst. Fuzzy Syst. Evolut. Comput. 10(10), 293–298 (2002)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  9. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  10. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, USA, pp. 2261–2269 (2017)

    Google Scholar 

  11. Huang, J., Xue, B., Sun, Y., Zhang, M.: A flexible variable-length particle swarm optimization approach to convolutional neural network architecture design. In: IEEE Congress on Evolutionary Computation (CEC), pp. 934–941 (2021). https://doi.org/10.1109/CEC45853.2021.9504716

  12. Junior, F.E.F., Yen, G.G.: Particle swarm optimization of deep neural networks architectures for image classification. Swarm Evolut. Comput. 49, 62–74 (2019)

    Article  Google Scholar 

  13. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995). https://doi.org/10.1109/ICNN.1995.488968

  14. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. University of Toronto (2009)

    Google Scholar 

  15. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical evaluation of deep architectures on problems with many factors of variation. In: Proceedings of the 24th International Conference on Machine Learning, pp. 473–480 (2007)

    Google Scholar 

  16. Liu, Y., et al.: A survey on evolutionary neural architecture search. IEEE Trans. Neural Netw. Learn. Syst. (Early Access), 1–21 (2021). https://doi.org/10.1109/TNNLS.2021.3100554

  17. Mi, J.X., Feng, J., Huang, K.Y.: Designing efficient convolutional neural network structure: a survey. Neurocomputing 489, 139–156 (2022)

    Article  Google Scholar 

  18. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1998)

    Google Scholar 

  19. Real, E., et al.: Large-scale evolution of image classifiers. In: International Conference on Machine Learning (ICML), pp. 2902–2911 (2017)

    Google Scholar 

  20. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747 (2016)

  21. Salah, R., Vincent, P., Muller, X., et al.: Contractive auto-encoders: explicit invariance during feature extraction. In: International Conference on Machine Learning (ICML), pp. 833–840 (2011)

    Google Scholar 

  22. Shang, R., Zhu, S., Ren, J., Liu, H., Jiao, L.: Evolutionary neural architecture search based on evaluation correction and functional units. Knowl. Based Syst., 109206 (2022)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  24. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    Article  MATH  Google Scholar 

  25. Sun, Y., Xue, B., Zhang, M., Yen, G.G.: Evolving deep convolutional neural networks for image classification. IEEE Trans. Evolut. Comput. 24(2), 394–407 (2019)

    Article  Google Scholar 

  26. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    Google Scholar 

  27. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9 (2015)

    Google Scholar 

  28. Wang, B., Sun, Y., Xue, B., Zhang, M.: Evolving deep convolutional neural networks by variable-length particle swarm optimization for image classification. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2018). https://doi.org/10.1109/CEC.2018.8477735

  29. Wang, B., Sun, Y., Xue, B., Zhang, M.: A hybrid differential evolution approach to designing deep convolutional neural networks for image classification. In: Mitrovic, T., Xue, B., Li, X. (eds.) AI 2018. LNCS (LNAI), vol. 11320, pp. 237–250. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03991-2_24

    Chapter  Google Scholar 

  30. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  31. Xie, L., Yuille, A.: Genetic CNN. In: IEEE International Conference on Computer Vision (ICCV), pp. 1379–1388 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhao Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, J., Xue, B., Sun, Y., Zhang, M. (2022). EDE-NAS: An Eclectic Differential Evolution Approach to Single-Path Neural Architecture Search. In: Aziz, H., Corrêa, D., French, T. (eds) AI 2022: Advances in Artificial Intelligence. AI 2022. Lecture Notes in Computer Science(), vol 13728. Springer, Cham. https://doi.org/10.1007/978-3-031-22695-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22695-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22694-6

  • Online ISBN: 978-3-031-22695-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics