Abstract
Complex ultrasound workflows calculating the outcome of ultrasound procedures such as neurostimulation, tumour ablation or photoacoustic imaging are composed of many computational tasks requiring high performance computing or cloud facilities to be computed in a sensible time. Most of these tasks are written as moldable parallel programs being able to run across various numbers of compute nodes. The number of compute nodes assigned to particular tasks strongly affects the overall execution and queuing times of the whole workflow (makespan) as well as the total computational cost.
This paper employs a genetic algorithm searching for a good resource distribution over the particular tasks, and a cluster simulator evaluating the makespan and cost of the candidate execution schedules. Since the exact execution time cannot be measured for every possible combination of the task, input data size, and assigned resources, several interpolation techniques are used to predict the task duration for a given amount of compute resources. The best execution schedules are eventually submitted to a real cluster with a PBS scheduler to validate the whole technique.
The experimental results confirm the proposed cluster simulator corresponds to a real PBS job scheduler with a sufficient fidelity. The investigation of the interpolation techniques showed that incomplete performance data can successfully be completed by linear and quadratic interpolations keeping the maximum mean error below 10%. Finally, the paper introduces a user defined parameter instructing the genetic algorithm to prefer either the makespan or cost, or find a suitable trade-off.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
IT4Innovations, Czech republic, https://docs.it4i.cz/barbora/introduction/.
- 2.
References
Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 1820 1967 Spring Joint Computer Conference, vol. 23(4), pp. 483–485 (1967)
Bharathi, S., Chervenak, A., Deelman, E., Mehta, G., Su, M.-H., Vahi, K.: Characterization of scientific workflows. In: Third Workshop on Workflows in Support of Large-Scale Science, pp. 1–10. IEEE (2008)
Bleuse, R., Hunold, S., Kedad-Sidhoum, S., Monna, F., Mounie, G., Trystram, D.: Scheduling independent moldable tasks on multi-cores with GPUs. IEEE Trans. Parallel Distrib. Syst. 28(9), 2689–2702 (2017)
Chan, T.F., Mathew, T.P.: Domain decomposition algorithms. Acta Numer 3, 61–143 (1994)
Chirkin, A.M., et al.: Execution time estimation for workflow scheduling. Future Generat. Comput. Syst. 75 (2017)
Deelman, E., Vahi, K., Juve, G., et al.: Pegasus: a workflow management system for science automation. Future Generat. Comput. Syst. (2014)
Dutot, P.-F., Netto, M.A.S., Goldman, A., Kon, F.: Scheduling moldable BSP tasks. In: Feitelson, D., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2005. LNCS, vol. 3834, pp. 157–172. Springer, Heidelberg (2005). https://doi.org/10.1007/11605300_8
Feitelson, D.G., Rudolph, L.: Toward convergence in job schedulers for parallel supercomputers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1996. LNCS, vol. 1162, pp. 1–26. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0022284
Gad, A.F.: Geneticalgorithmpython: Building genetic algorithm in python (2021)
Goldberg, D.E.: Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Longman, Boston (1989)
Henderson, R.L.: Job scheduling under the portable batch system. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1995. LNCS, vol. 949, pp. 279–294. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60153-8_34
Hovestadt, M., Kao, O., Keller, A., Streit, A.: Scheduling in HPC resource management systems: queuing vs. planning. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 1–20. Springer, Heidelberg (2003). https://doi.org/10.1007/10968987_1
Izadkhah, H.: Learning based genetic algorithm for task graph scheduling. Applied Computational Intelligence and Soft Computing (2019)
Jansen, K., Land, F.: Scheduling Monotone Moldable Jobs in Linear Time. In: 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 172–181. IEEE, May 2018
Jaros, J., Rendell, A.P., Treeby, B.E.: Full-wave nonlinear ultrasound simulation on distributed clusters with applications in high-intensity focused ultrasound. Int. J. High Perfor. Comput. Appli. 30(2), 137–155 (2016)
Jaros, M., Jaros, J.: Performance-cost optimization of moldable scientific workflows. In: Klusáček, D., Cirne, W., Rodrigo, G.P. (eds.) JSSPP 2021. LNCS, vol. 12985, pp. 149–167. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88224-2_8
Jaros, M., Sasak, T., Treeby, B.E., Jaros, J.: Estimation of execution parameters for k-Wave simulations. In: Kozubek, T., Arbenz, P., Jaroš, J., Říha, L., Šístek, J., Tichý, P. (eds.) HPCSE 2019. LNCS, vol. 12456, pp. 116–134. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67077-1_7
Jaros, M., Treeby, E.B., Jaros, J., Georgiou, P.: k-dispatch: A workflow management system for the automated execution of biomedical ultrasound simulations on remote computing resources. In: Platform for Advanced Scientific Computing Conference, pp. 1–10. ACM (2020)
Omara, F.A., Arafa, M.M.: Genetic algorithms for task scheduling problem. J. Paral. Distrib. Comput. 70(1), 13–22 (2010)
Poudel, J., Lou, Y., Anastasio, M.A.: A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography. Phys. Med. Biol. (2019)
Rajaei, H., Dadfar, M.: Comparison Of backfilling algorithms for job scheduling in distributed memory parallel system. In: 2006 Annual Conference and Exposition Proceedings, ASEE Conferences, pp. 11.339.1-11.339.12 (2007)
Robert, Y.: Task Graph Scheduling. In: Encyclopedia of Parallel Computing, pp. 2013–2025 (2011)
Szabo, T.L.: Diagnostic Ultrasound Imaging: Inside Out (2014)
Treeby, B., Cox, B.: k-wave: Matlab toolbox for the simulation and reconstruction of photoacoustic wave fields. J. Biomed. Opt. 15, 021314 (2010)
Virtanen, P., Gommers, R., Oliphant, T. E. A. O.: Fundamental algorithms for scientific computing in python. SciPy 1.0. Nat. Methods 17, 261–272 (2020)
Wolstencroft, K., Haines, R., Fellows, D., et al.: The taverna workflow suite: designing and executing workflows of web services on the desktop, web or in the cloud. Nucleic Acids Res. 41(W1), W557–W561 (2013)
Ye, D., Chen, D.Z., Zhang, G.: Online scheduling of moldable parallel tasks. J. Sched. 21(6), 647–654 (2018). https://doi.org/10.1007/s10951-018-0556-2
Yoo, A.B., Jette, M.A., Grondona, M.: SLURM: simple linux utility for resource management. In: Feitelson, D., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/10968987_3
Acknowledgments
This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90140). This work was supported by Brno University of Technology under project numbers IGA FIT/FSI-J-22-7980 Acceleration of Selected Evolutionary Communication Techniques for Solving Combinatoric Tasks and FIT-S-20-6309 Design, Optimization and Evaluation of Application Specific Computer Systems.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jaros, M., Jaros, J. (2023). Optimization of Execution Parameters of Moldable Ultrasound Workflows Under Incomplete Performance Data. In: Klusáček, D., Julita, C., Rodrigo, G.P. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2022. Lecture Notes in Computer Science, vol 13592. Springer, Cham. https://doi.org/10.1007/978-3-031-22698-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-22698-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22697-7
Online ISBN: 978-3-031-22698-4
eBook Packages: Computer ScienceComputer Science (R0)