Abstract
Over the past decade, the use of virtual reality applications is increasing in the field of robotics, which is set to increase even further with the advent of “Metaverse”. Metaverse is considered as an “embodied internet” which will seamlessly integrate machines, robots, and computer applications including those in virtual and augmented reality. In this work, we review the current state of research and discuss the underlying problems with the current design and evaluation methods for the state-of-the-art virtual reality interfaces employed in the field of robotics. To overcome these issues, we present our perspective on the methods for design and evaluation of such interfaces. Our perspective takes into account human-centered design methods along with the functional measures of evaluating the performance of the interfaces. This interdisciplinary perspective emphasizes rigorously designed empirical experiments that require close collaborations among engineers, designers, human-computer interaction researchers and cognitive scientists.
Chenxu Hao and Anany Dwivedi authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Stephenson, N.: Snow Crash: A Aovel. Spectra (2003)
Hackl, C.: Defining the metaverse today. [Online]. Available: https://www.forbes.com/sites/cathyhackl/2021/05/02/defining-the-metaverse-today/?sh=433cc19a6448
Iannuzzi, J.B, Faulds, Z.: Top companies chasing the metaverse. [Online]. Available: https://www.thestreet.com/technology/companies-making-money-metaverse
Newton, C. Mark in the metaverse. [Online]. Available: https://www.theverge.com/22588022/mark-zuckerberg-facebook-ceo-metaverse-interview
Alnajjar, M., Abutabikh, A., Issa, M., Debeljak, M., Cikajlo, I..: Development of 3d exergame for upper limbs rehabilitation using leap motion controller and unity. In: 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech), pp. 24–29. IEEE (2020)
Trombetta, M., Henrique, P.P.B., Brum, M.R., Colussi, E.L., De Marchi, A.C.B., Rieder, R.: Motion rehab ave 3d: A vr-based exergame for post-stroke rehabilitation. Comput. Methods Programs Biomed. 151, 15–20 (2017)
Bui, J., Luauté, J., Farnè, A.: Enhancing upper limb rehabilitation of stroke patients with virtual reality: a mini review. Front. Virtual Reality, 146 (2021)
Zgonnikov, A., Abbink, D., Markkula, G.: Should i stay or should i go? evidence accumulation drives decision making in human drivers (2020)
Makhataeva, Z., Varol, H.A.: Augmented reality for robotics: a review. Robotics 9(2), 21 (2020)
Schmidt, M. Köppinger, K., Fan, C., Kowalewski, K.-F., Schmidt, L., Vey, J., Proctor, T., Probst, P., Bintintan, V., Müller-Stich, B.-P., et al.: Virtual reality simulation in robot-assisted surgery: meta-analysis of skill transfer and predictability of skill. BJS open 5(2), zraa066 (2021)
Ambron, E., Miller, A., Kuchenbecker, K.J., Buxbaum, L.J., Coslett, H.B.: Immersive low-cost virtual reality treatment for phantom limb pain: evidence from two cases. Front. Neurol. 9, 67 (2018)
Boschmann, A., Neuhaus, D., Vogt, S., Kaltschmidt, C., Platzner, M., Dosen, S.: Immersive augmented reality system for the training of pattern classification control with a myoelectric prosthesis. J. Neuroeng. Rehabil. 18(1), 1–15 (2021)
Stadler, S., Kain, K., Giuliani, M., Mirnig, N., Stollnberger, G., Tscheligi, M.: Augmented reality for industrial robot programmers: workload analysis for task-based, augmented reality-supported robot control. In: 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 179–184 . IEEE (2016)
Liu, O., Rakita, D., Mutlu, B., Gleicher, M.: Understanding human-robot interaction in virtual reality. In: 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 751–757. IEEE (2017)
De Pace, F., Gorjup, G., Bai, H., Sanna, A., Liarokapis, M., Billinghurst, M.: Leveraging enhanced virtual reality methods and environments for efficient, intuitive, and immersive teleoperation of robots. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 12 967–12 973. IEEE (2021)
Zhou, R., Wu, Y., Sareen, H.: Hextouch: a wearable haptic robot for complementary interactions to companion agents in virtual reality. In: SIGGRAPH Asia. Emerging Technologies, pp. 1–2 (2020)
Sutcliffe, A.G., Poullis, C., Gregoriades, A., Katsouri, I., Tzanavari, A., Herakleous, K.: Reflecting on the design process for virtual reality applications. Int. J. Hum. Comput. Interact. 35(2), 168–179 (2019)
Beckerle, P., Castellini, C., Lenggenhager, B.: Robotic interfaces for cognitive psychology and embodiment research: a research roadmap. Wiley Interdisc. Rev.: Cogn. Sci. 10(2), e1486 (2019)
Dünser, A., Grasset, R., Seichter, H., Billinghurst, M.: Applying HCI principles to AR systems design. In: 2nd International Workshop at the IEEE Virtual Reality 2007 Conference, p. 2007. North Carolina, USA, Charlotte (2007)
Boletsis, C., Cedergren, J.E., Kongsvik, S.: Hci research in virtual reality: a discussion of problem-solving. In: International Conference on Interfaces and Human Computer Interaction. IHCI 2017, Portugal, 21–23 July 2017 (2017)
Kim, Y.M., Rhiu, I., Yun, M.H.: A systematic review of a virtual reality system from the perspective of user experience. Int. J. Hum. Comput. Interact. 36(10), 893–910 (2020)
Oulasvirta, A., Jokinen, J.P., Howes, A.: Computational rationality as a theory of interaction. In: CHI Conference on Human Factors in Computing Systems, pp. 1–14 (2022)
Lewis, R.L., Howes, A., Singh, S.: Computational rationality: Linking mechanism and behavior through bounded utility maximization. Top. Cogn. Sci. 6(2), 279–311 (2014)
Gershman, S.J., Horvitz, E.J., Tenenbaum, J.B.: Computational rationality: a converging paradigm for intelligence in brains, minds, and machines. Science 349(6245), 273–278 (2015)
Weistroffer, V., Paljic, A., Callebert, L., Fuchs, P.: A methodology to assess the acceptability of human-robot collaboration using virtual reality. In: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology, pp. 39–48 (2013)
Badia, S.B.I., Silva, P.A., Branco, D., Pinto, A., Carvalho, C., Menezes, P., Almeida, J., Pilacinski, A.: Virtual reality for safe testing and development in collaborative robotics: challenges and perspectives. Electronics 11(11), 726 (2022)
Madhavan, K., Kolcun, J.P.G., Chieng, L.O., Wang, M.Y.: Augmented-reality integrated robotics in neurosurgery: are we there yet? Neurosurg. Focus 42(5), E3 (2017)
Luciano, C.J., Banerjee, P.P., Sorenson, J.M., Foley, K.T., Ansari, S.A., Rizzi, S., Germanwala, A.V., Kranzler, L., Chittiboina, P., Roitberg, B.Z.: Percutaneous spinal fixation simulation with virtual reality and haptics. Neurosurgery 72(suppl_1), A89–A96 (2013)
Yudkowsky, R., Luciano, C., Banerjee, P., Schwartz, A., Alaraj, A., Lemole, G.M., Jr., Charbel, F., Smith, K., Rizzi, S., Byrne, R., et al.: Practice on an augmented reality/haptic simulator and library of virtual brains improves residents’ ability to perform a ventriculostomy. Simul. Healthc. 8(1), 25–31 (2013)
Alaraj, A., Luciano, C.J., Bailey, D.P., Elsenousi, A., Roitberg, B.Z., Bernardo, A., Banerjee, P.P., Charbel, F.T.: Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Operative Neurosurg. 11(1), 52–58 (2015)
Pessaux, P., Diana, M., Soler, L., Piardi, T., Mutter, D., Marescaux, J.: Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbeck’s Arch. Surg. 400(3), 381–385 (2015)
Makhataeva, Z., Zhakatayev, A., Varol, H.A.: Safety aura visualization for variable impedance actuated robot. In: IEEE/SICE International Symposium on System Integration (SII), 805–810. IEEE (2019)
Saponas, Z., Tan, D.S., Morris, D., Balakrishnan, R., Turner, J., Landay, J.A.: Enabling always-available input with muscle-computer interfaces. In: Proceedings of the 22nd annual ACM symposium on User interface software and technology, pp. 167–176 (2009)
Chapman, J., Dwivedi, A., Liarokapis, M.: A wearable, open-source, lightweight forcemyography armband: on intuitive, robust muscle-machine interfaces. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4138–4143. IEEE (2021)
Sutcliffe, A.G., Kaur, K.D.: Evaluating the usability of virtual reality user interfaces. Behav. Inf. Technol. 19(6), 415–426 (2000)
Bowman, D.A., McMahan, R.P.: Virtual reality: how much immersion is enough? Computer 40(7), 36–43 (2007)
Nostadt, N., Abbink, D.A., Christ, O., Beckerle, P.: Embodiment, presence, and their intersections: teleoperation and beyond. ACM Transa. Hum. Robot Inter. (THRI) 9(4), 1–19 (2020)
Morra, L., Lamberti, F., Pratticó, F.G., La Rosa, S., Montuschi, P.: Building trust in autonomous vehicles: role of virtual reality driving simulators in HMI design. IEEE Trans. Veh. Technol. 68(10), 9438–9450 (2019)
Moore, B.A., Urakami, J.: The impact of the physical and social embodiment of voice user interfaces on user distraction. Int. J. Hum. Comput. Stud. 102784 (2022)
Oviatt, S.: Human-centered design meets cognitive load theory: designing interfaces that help people think. In: Proceedings of the 14th ACM international conference on Multimedia, pp. 871–880 (2006)
Lindlbauer, D., Feit, A.M., Hilliges, O.: Context-aware online adaptation of mixed reality interfaces. In: Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pp. 147–160 (2019)
Schürmann, T., Mohler, B.J., Peters, J., Beckerle, P.: How cognitive models of human body experience might push robotics. Front. Neurorobotics 13, 14 (2019)
Rizzo, A.A., Kim, G.J., Yeh, S.-C., Thiebaux, M., Hwang, J., Buckwalter, J.G.: Development of a benchmarking scenario for testing 3d user interface devices and interaction methods. In Proceedings of the 11th International Conference on Human Computer Interaction. Las Vegas, Nevada (2005)
Isaacs, E., Walendowski, A.: Designing from both sides of the screen: How designers and engineers can collaborate to build cooperative technology. Sams Publishing (2002)
Oulasvirta, A, Hornbæk, K.: Hci research as problem-solving. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, pp. 4956–4967 (2016)
Sosa, R., Montiel, M., Sandoval, E.B., Mohan, R.E.: et al.: Robot ergonomics: Towards human-centred and robot-inclusive design. In: DS 92: Proceedings of the DESIGN 2018 15th International Design Conference, pp. 2323–2334 (2018)
Beckerle, P., Salvietti, G., Unal, R., Prattichizzo, D., Rossi, S., Castellini, C., Hirche, S., Endo, S., Amor, H.B., Ciocarlie, M., et al.: A human-robot interaction perspective on assistive and rehabilitation robotics. Front. Neurorobotics 11, 24 (2017)
Beckerle, P., Christ, O., Schürmann, T., Vogt, J., von Stryk, O., Rinderknecht, S.: A human-machine-centered design method for (powered) lower limb prosthetics. Robot. Auton. Syst. 95, 1–12 (2017)
Gorjup, G., Dwivedi, A., Elangovan, N., Liarokapis, M.: An intuitive, affordances oriented telemanipulation framework for a dual robot arm hand system: On the execution of bimanual tasks. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3611–3616. IEEE (2019)
Dwivedi, A., Shieff, D., Turner, A., Gorjup, G., Kwon, Y., Liarokapis, M.: A shared control framework for robotic telemanipulation combining electromyography based motion estimation and compliance control. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 9467–9473. IEEE (2021)
Bianchi, M., Valenza, G., Greco, A., Nardelli, M., Battaglia, E., Bicchi, A., Scilingo, E.P.: Towards a novel generation of haptic and robotic interfaces: integrating affective physiology in human-robot interaction. In: 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 125–131. IEEE (2016)
Aguilera, F., Alarcón, R.A., Guerrero, L.A., Collazos, A.: A cognitive model of user interaction as a guideline for designing novel interfaces. In: IFIP World Computer Congress, TC 2, pp. 62–76. Springer (2006)
Gonzalez-Franco, M., Lanier, J.: Model of illusions and virtual reality. Front. Psychol. 8, 1125 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hao, C., Dwivedi, A., Beckerle, P. (2023). A Literature-Based Perspective on Human-Centered Design and Evaluation of Interfaces for Virtual Reality in Robotics. In: Borja, P., Della Santina, C., Peternel, L., Torta, E. (eds) Human-Friendly Robotics 2022. HFR 2022. Springer Proceedings in Advanced Robotics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-031-22731-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-22731-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22730-1
Online ISBN: 978-3-031-22731-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)