Skip to main content

Robotic Strawberry Flower Treatment Based on Deep-Learning Vision

  • Conference paper
  • First Online:
Human-Friendly Robotics 2022 (HFR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 26))

Included in the following conference series:

  • 526 Accesses

Abstract

In this paper we propose a robotic system for flower removal and pollination with the deep learning-based 3D perception module. The robotic system consists of a collaborative robot equipped with an RGB-D camera used in the detection pipeline. A semi-automated 3D based image annotation method (A3IA) is developed for the purpose of automatically generating the training data. The efficiency of the detection model trained on automatically annotated data is compared to that of the model trained on synthetic data. Experimental validation of the proposed methods is conducted and robustness and precision of both detection and positioning are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AliceVision: Meshroom: a 3D reconstruction software (2018). https://github.com/alicevision/meshroom

  2. Barth, R., IJsselmuiden, J., Hemming, J., Van Henten, E.J.: Data synthesis methods for semantic segmentation in agriculture: a capsicum annuum dataset. Comput. Electron. Agric. 144, 284–296 (2018)

    Google Scholar 

  3. De Gregorio, D., Tonioni, A., Palli, G., Di Stefano, L.: Semiautomatic labeling for deep learning in robotics. IEEE Trans. Autom. Sci. Eng. 17(2), 611–620 (2020)

    Article  Google Scholar 

  4. Di Cicco, M., Potena, C., Grisetti, G., Pretto, A.: Automatic model based dataset generation for fast and accurate crop and weeds detection. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5188–5195. IEEE (2017)

    Google Scholar 

  5. Dias, P.A., Tabb, A., Medeiros, H.: Apple flower detection using deep convolutional networks. Comput. Industry 99, 17–28 (2018)

    Article  Google Scholar 

  6. Doersch, C., Zisserman, A.: Sim2real transfer learning for 3d human pose estimation: motion to the rescue. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  7. He, L., Schupp, J.: Sensing and automation in pruning of apple trees: a review. Agronomy 8, 211 (2018)

    Google Scholar 

  8. Hess, R.: Blender Foundations: The Essential Guide to Learning Blender 2.6. Focal Press (2010)

    Google Scholar 

  9. Horton, R., Cano, E., Bulanon, D., Fallahi, E.: Peach flower monitoring using aerial multispectral imaging. J. Imaging 3(1) (2017)

    Google Scholar 

  10. Ilin, V., Kalinov, I., Karpyshev, P.A., Tsetserukou, D.: Deepscanner: a robotic system for automated 2d object dataset collection with annotations. arXiv:2108.02555 (2021)

  11. Jia, W., Zhang, Y., Lian, J., Zheng, Y., Zhao, D., Li, C.: Apple harvesting robot under information technology: a review. Int. J. Adv. Robot. Syst. 17(3) (2020)

    Google Scholar 

  12. Kar, A., Prakash, A., Liu, M.Y., Cameracci, E., Yuan, J., Rusiniak, M., Acuna, D., Torralba, A., Fidler, S.: Meta-sim: learning to generate synthetic datasets. In: ICCV (2019)

    Google Scholar 

  13. Kiyokawa, T., Tomochika, K., Takamatsu, J., Ogasawara, T.: Fully automated annotation with noise-masked visual markers for deep-learning-based object detection. IEEE Robot. Autom. Lett. 4(2), 1972–1977 (2019)

    Article  Google Scholar 

  14. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.: Ssd: Single shot multibox detector. In: Computer Vision—ECCV 2016, vol. 9905, pp. 21–37 (2016)

    Google Scholar 

  15. Maric, B., Polic, M., Tabak, T., Orsag, M.: Unsupervised optimization approach to in situ calibration of collaborative human-robot interaction tools. In: 2020 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 255–262. IEEE (2020)

    Google Scholar 

  16. Pashevich, A., Strudel, R., Kalevatykh, I., Laptev, I., Schmid, C.: Learning to augment synthetic images for sim2real policy transfer. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2651–2657 (2019)

    Google Scholar 

  17. Polic, M., Ivanovic, A., Maric, B., Arbanas, B., Tabak, J., Orsag, M.: Structured ecological cultivation with autonomous robots in indoor agriculture. In: 2021 16th International Conference on Telecommunications (ConTEL), pp. 189–195 (2021)

    Google Scholar 

  18. Polic, M., Tabak, J., Orsag, M.: Pepper to fall: a perception method for sweet pepper robotic harvesting. Intelligent Service Robotics (2021)

    Google Scholar 

  19. Polic, M., et al.: Strawberry flowers (2021). https://sites.google.com/view/specularia-pepper-picking/home/flower-picking. Accessed 2021-09-09

  20. Ruiz-Sarmiento, J., Galindo, C., Gonzalez-Jimenez, J.: Olt: a toolkit for object labeling applied to robotic RGB-D datasets. In: 2015 European Conference on Mobile Robots (ECMR), pp. 1–6 (2015)

    Google Scholar 

  21. Strader, J., Yang, C., Gu, Y., Nguyen, J., Tatsch, C., Du, Y., Lassak, K., Buzzo, B., Watson, R., Cerbone, H., Ohi, N.: Flower interaction subsystem for a precision pollination robot. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5534–5541 (2019)

    Google Scholar 

  22. Stumpf, D., Krauß, S., Reis, G., Wasenmüller, O., Stricker, D.: Salt: a semi-automatic labeling tool for RGB-D video sequences. In: 16th International Conference on Computer Vision Theory and Applications, pp. 595–603 (2021)

    Google Scholar 

  23. Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., Abbeel, P.: Domain randomization for transferring deep neural networks from simulation to the real world. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 23–30. IEEE (2017)

    Google Scholar 

  24. Xiong, Y., Ge, Y., Grimstad, L., From, P.J.: An autonomous strawberry-harvesting robot: design, development, integration, and field evaluation. J. Field Robot. 37(2), 202–224 (2020)

    Article  Google Scholar 

  25. Zhang, Q., Karkee, M., Tabb, A.: The use of agricultural robots in orchard management. In: Billingsley, J. (ed.) Robotics and Automation for Improving Agriculture. Burleigh DODDS Science Publishing (2019)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by Croatian Science Foundation under the project Specularia UIP-2017-05-4042 [17]. The work of doctoral student Jelena Vuletić has been supported in part by the “Young researchers’ career development project-training of doctoral students” of the Croatian Science Foundation funded by the European Union from the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Vuletić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vuletić, J., Polić, M., Orsag, M. (2023). Robotic Strawberry Flower Treatment Based on Deep-Learning Vision. In: Borja, P., Della Santina, C., Peternel, L., Torta, E. (eds) Human-Friendly Robotics 2022. HFR 2022. Springer Proceedings in Advanced Robotics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-031-22731-8_14

Download citation

Publish with us

Policies and ethics