Skip to main content

Deformation-Aware Contact-Rich Manipulation Skills Learning and Compliant Control

  • Conference paper
  • First Online:
Human-Friendly Robotics 2022 (HFR 2022)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 26))

Included in the following conference series:

  • 444 Accesses

Abstract

In this paper, we study a vision-based reactive adaptation method for contact-rich manipulation tasks, based on the compliant control and learning from demonstration. For contact-rich tasks, the compliant control method is essential, especially when interacting with a deformable object with unknown properties, such as pizza dough. Learning from demonstration (LfD) provides a solution for this challenging task. However, the generalisation capabilities of LfD for deformable object manipulation tasks are still a challenging and opening issue, especially for unknown and dynamic tasks. Therefore, in this work, we investigate the vision and force-based perception feedback to enhance the generalisation of the LfD outcomes. The computer vision algorithm was developed to recognise the shape of the object and calculate the deviation between the desired shape and the current shape. The deviation of shape adjusts the parameters of learned primitive skills encoded by Dynamic Movement Primitives (DMPs). We adopt the pizza dough rolling task as the typical case to evaluate the performance of the proposed method. The shape and thickness of the dough can be made to the desired shape and thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note nonprehensile manipulation means manipulation without grasping, such as pushing, flipping, throwing, and squeezing.

  2. 2.

    Note we ignore the friction force in practice.

  3. 3.

    Note the pizza dough is not as large as the real pizza dough, because the roller is not large enough. The proposed method can be employed for big dough if we adopt a large roller.

References

  1. Si, W., Wang, N., Yang, C.: A review on manipulation skill acquisition through teleoperation-based learning from demonstration. Cognit. Comput. Syst. 3(1), 1–16 (2021)

    Article  MathSciNet  Google Scholar 

  2. Matas, J., James, S., Davison, A.J.: Sim-to-real reinforcement learning for deformable object manipulation. In: Conference on Robot Learning. PMLR, pp. 734–743 (2018)

    Google Scholar 

  3. Hu, Z., Sun, P., Pan, J.: Three-dimensional deformable object manipulation using fast online gaussian process regression. IEEE Robot. Automat. Lett. 3(2), 979–986 (2018)

    Article  Google Scholar 

  4. Si, W., Guan, Y., Wang, N.: Adaptive compliant skill learning for contact-rich manipulation with human in the loop. IEEE Robot. Automat. Lett. 7(3), 5834–5841 (2022)

    Article  Google Scholar 

  5. Kim, J.-T., Ruggiero, F., Lippiello, V., Siciliano, B.: Planning framework for robotic pizza dough stretching with a rolling pin. In: Robot Dynamic Manipulation. Springer, pp. 229–253 (2022)

    Google Scholar 

  6. Gutiérrez-Giles, A., Ruggiero, F., Lippiello, V., Siciliano, B.: Closed-loop control of a nonprehensile manipulation system inspired by the pizza-peel mechanism. In: 18th European Control Conference (ECC). IEEE 2019, pp. 1580–1585 (2019)

    Google Scholar 

  7. Petit, A., Lippiello, V., Fontanelli, G.A., Siciliano, B.: Tracking elastic deformable objects with an rgb-d sensor for a pizza chef robot. Robot. Auton. Syst. 88, 187–201 (2017)

    Article  Google Scholar 

  8. Satici, A.C., Ruggiero, F., Lippiello, V., Siciliano, B.: A coordinate-free framework for robotic pizza tossing and catching. In: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 3932–3939 (2016)

    Google Scholar 

  9. Si, W., Wang, N., Li, Q., Yang, C.: A framework for composite layup skill learning and generalizing through teleoperation. Front. Neurorobotics 16 (2022)

    Google Scholar 

  10. Lu, Z., Wang, N., Yang, C.: A novel iterative identification based on the optimised topology for common state monitoring in wireless sensor networks. Int. J. Syst. Sci. 53(1), 25–39 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. Figueroa, N., Ureche, A.L.P., Billard, A.: Learning complex sequential tasks from demonstration: a pizza dough rolling case study. In: 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, pp. 611–612 (2016)

    Google Scholar 

  12. Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8(3), 313–326 (1992)

    Article  Google Scholar 

  13. Pairet, È., Ardón, P., Mistry, M., Petillot, Y.: Learning generalizable coupling terms for obstacle avoidance via low-dimensional geometric descriptors. IEEE Robot. Automat. Lett. 4(4), 3979–3986 (2019)

    Article  Google Scholar 

  14. Oktay, O., Schlemper, J., Folgoc, L.L., Lee, M., Heinrich, M., Misawa, K., Mori, K., McDonagh, S., Hammerla, N.Y., Kainz, B. et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 234–241 (2015)

    Google Scholar 

  16. Mezirow, J.: Perspective transformation. Adult Educ. 28(2), 100–110 (1978)

    Article  Google Scholar 

  17. Hartley, R., Zisserman, A.: Multiple view Geometry in Computer Vision, 2nd edn. Cambridge University Press, New York, NY, USA (2003)

    MATH  Google Scholar 

  18. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25(2), 328–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Si, W., Wang, N., Yang, C.: Composite dynamic movement primitives based on neural networks for human-robot skill transfer. Neural Comput. Appl. 1–11 (2021)

    Google Scholar 

  20. Billard, A., Mirrazavi, S., Figueroa, N.: Learning for Adaptive and Reactive Robot Control: A Dynamical Systems Approach. MIT Press (2022)

    Google Scholar 

  21. Ude, A., Nemec, B., Petrić, T., Morimoto, J.: Orientation in cartesian space dynamic movement primitives. In: 2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE, pp. 2997–3004 (2014)

    Google Scholar 

  22. Saveriano, M., Piater, J.: e & i Elektrotechnik und Informationstechnik 137(6), 309–315 (2020). https://doi.org/10.1007/s00502-020-00816-7

  23. Hogan, N.: Impedance control: an approach to manipulation: Part i-theory (1985)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the H2020 Marie Skłodowska-Curie Actions Individual Fellowship under Grant 101030691.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Si, W., Guo, C., Dong, J., Lu, Z., Yang, C. (2023). Deformation-Aware Contact-Rich Manipulation Skills Learning and Compliant Control. In: Borja, P., Della Santina, C., Peternel, L., Torta, E. (eds) Human-Friendly Robotics 2022. HFR 2022. Springer Proceedings in Advanced Robotics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-031-22731-8_7

Download citation

Publish with us

Policies and ethics