Skip to main content

An Exploration of Autism Spectrum Disorder Classification from Structural and Functional MRI Images

  • Conference paper
  • First Online:
ICT Innovations 2022. Reshaping the Future Towards a New Normal (ICT Innovations 2022)

Abstract

There are strong indications that structural and functional magnetic resonance imaging (MRI) may help identify biologically relevant phenotypes of neurodevelopmental disorders such as Autism spectrum disorder (ASD). Extracting patterns from MRI data is challenging due to the high dimensionality, limited cardinality and data heterogeneity. In this paper, we explore structural and resting state functional MRI (rs-fMRI) for ASD classification using available ABIDE II dataset, using several standard machine learning (ML) models and convolutional neural networks (CNNs). To overcome the high dimensionality problem, we propose a simple data transformation method based on histograms calculation for the standard ML models and a simple 3D-to-2D and 4D-to-3D data transformation method for the CNNs in ASD classification. Numerous research has been done for ASD classification using the online available ABIDE I dataset, and several with the ABIDE II dataset, the latter mostly working with single-site classification studies. Here, we take the whole ABIDE II dataset using all structural and functional raw data. Our results show that the proposed methods achive state-of-the art results of high 71.4% accuracy (functional) and 73.4% AUC (structural) compared to the best performing results in literature of 68% accuracy (functional) for ASD classification on all ABIDE dataset.

Supported by Faculty of Computer Science and Engineering, Skopje, N. Macedonia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: \(\{\)TensorFlow\(\}\): a system for \(\{\)Large-Scale\(\}\) machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pp. 265–283 (2016)

    Google Scholar 

  2. Abraham, A., et al.: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example. Neuroimage 147, 736–745 (2017)

    Article  Google Scholar 

  3. Almuqhim, F., Saeed, F.: ASD-SAENet: a sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data. Front. Comput. Neurosci. 15, 654315 (2021)

    Article  Google Scholar 

  4. Artifact detection tools ART (2019). http://www.nitrc.org/projects/artifact_detect. Accessed 30 12 2019

  5. Avants, B.B., Tustison, N., Song, G., et al.: Advanced normalization tools (ANTS). Insight J 2(365), 1–35 (2009)

    Google Scholar 

  6. Batista, G., Silva, D.F., et al.: How k-nearest neighbor parameters affect its performance. In: Argentine Symposium on Artificial Intelligence, pp. 1–12. Citeseer (2009)

    Google Scholar 

  7. Bengs, M., Gessert, N., Schlaefer, A.: 4D Spatio-temporal deep learning with 4D fMRI data for autism spectrum disorder classification. arXiv preprint arXiv:2004.10165 (2020)

  8. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT 2010. Physica-Verlag HD, pp. 177–186. Springer (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

  9. Chollet, F., et al.: Keras: The python deep learning library. Astrophy. Source Code Libr., pp. ascl-1806 (2018)

    Google Scholar 

  10. Di Martino, A., et al.: Enhancing studies of the connectome in autism using the autism brain imaging data exchange II. Sci. data 4(1), 1–15 (2017)

    Article  Google Scholar 

  11. DI Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  12. Dougherty, D.D., Rauch, S.L., Rosenbaum, J.F.: Essentials of Neuroimaging for Clinical Practice. American Psychiatric Pub, Washington (2008)

    Google Scholar 

  13. El Gazzar, A., Cerliani, L., van Wingen, G., Thomas, R.M.: Simple 1-D convolutional networks for resting-state fMRI based classification in autism. In: 2019 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2019)

    Google Scholar 

  14. El-Gazzar, A., Quaak, M., Cerliani, L., Bloem, P., van Wingen, G., Mani Thomas, R.: A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification study. In: Zhou, L., et al. (eds.) OR 2.0/MLCN -2019. LNCS, vol. 11796, pp. 95–102. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32695-1_11

    Chapter  Google Scholar 

  15. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

  16. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63(1), 3–42 (2006). https://doi.org/10.1007/s10994-006-6226-1

    Article  MATH  Google Scholar 

  18. Hoerl, A.E., Kannard, R.W., Baldwin, K.F.: Ridge regression: some simulations. Commun. Stat. Theory Methods 4(2), 105–123 (1975)

    MATH  Google Scholar 

  19. Hosmer, D.W., Jr., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, vol. 398. Wiley, Hoboken (2013)

    Book  MATH  Google Scholar 

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  21. Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M.: FSL. Neuroimage 62(2), 782–790 (2012)

    Article  Google Scholar 

  22. Jiang, H., Cao, P., Xu, M., Yang, J., Zaiane, O.: Hi-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Comput. Biol. Med. 127, 104096 (2020)

    Article  Google Scholar 

  23. Khodatars, M., et al.: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review. Comput. Biol. Med. 139, 104949 (2021)

    Article  Google Scholar 

  24. Khosla, M., Jamison, K., Kuceyeski, A., Sabuncu, M.R.: 3D convolutional neural networks for classification of functional connectomes. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 137–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_16

    Chapter  Google Scholar 

  25. Kim, B.H., Ye, J.C.: Understanding graph isomorphism network for rs-fMRI functional connectivity analysis. Front. Neurosci., 630 (2020)

    Google Scholar 

  26. Kingma, D.P., Ba, J.: ADAM: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  27. Li, X., Morgan, P.S., Ashburner, J., Smith, J., Rorden, C.: The first step for neuroimaging data analysis: DICOM to NIfTI conversion. J. Neurosci. Methods 264, 47–56 (2016)

    Article  Google Scholar 

  28. Li, X., et al.: BrainGNN: interpretable brain graph neural network for fMRI analysis. Med. Image Anal. 74, 102233 (2021)

    Article  Google Scholar 

  29. Liaw, A., Wiener, M., et al.: Classification and regression by randomForest. R News 2(3), 18–22 (2002)

    Google Scholar 

  30. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Qayyum, A., et al.: An efficient 1DCNN-LSTM deep learning model for assessment and classification of fMRI-based autism spectrum disorder. In: Raj, J.S., Kamel, K., Lafata, P. (eds.) Innovative Data Communication Technologies and Application, vol. 96, pp. 1039–1048. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-7167-8_77

    Chapter  Google Scholar 

  32. Riaz, A., Asad, M., Alonso, E., Slabaugh, G.: DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI. J. Neurosci. Methods 335, 108506 (2020)

    Article  Google Scholar 

  33. Riedmiller, M.: Advanced supervised learning in multi-layer perceptrons-from backpropagation to adaptive learning algorithms. Comput. Stan. Interfaces 16(3), 265–278 (1994)

    Article  Google Scholar 

  34. Rish, I., et al.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)

    Google Scholar 

  35. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)

    Article  MathSciNet  Google Scholar 

  36. Sarraf, S., Desouza, D.D., Anderson, J.A., Saverino, C.: MCADNNeT: recognizing stages of cognitive impairment through efficient convolutional fMRI and MRI neural network topology models. IEEE Access 7, 155584–155600 (2019)

    Article  Google Scholar 

  37. Serai, S.D.: Basics of magnetic resonance imaging and quantitative parameters T1, T2, T2*, T1rho and diffusion-weighted imaging. Pediatr. Radiol. 52(2), 217–227 (2021). https://doi.org/10.1007/s00247-021-05042-7

    Article  Google Scholar 

  38. Smith, S.M.: Bet: brain extraction tool. FMRIB TR00SMS2b, Oxford Centre for Functional Magnetic Resonance Imaging of the Brain), Department of Clinical Neurology, Oxford University, John Radcliffe Hospital, Headington, UK (2000)

    Google Scholar 

  39. Statistical parametric mapping SPM12 (2018). https://www.fil.ion.ucl.ac.uk/spm/software/spm12/. Accessed 30 12 2019

  40. Sporns, O.: Structure and function of complex brain networks. Dialogues Clin. Neurosci. 15, 247–262 (2022)

    Article  Google Scholar 

  41. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Tahmassebi, A., Gandomi, A.H., McCann, I., Schulte, M.H., Goudriaan, A.E., Meyer-Baese, A.: Deep learning in medical imaging: fMRI big data analysis via convolutional neural networks. In: Proceedings of the Practice and Experience on Advanced Research Computing, pp. 1–4 (2018)

    Google Scholar 

  43. Thomas, R.M., Gallo, S., Cerliani, L., Zhutovsky, P., El-Gazzar, A., Van Wingen, G.: Classifying autism spectrum disorder using the temporal statistics of resting-state functional MRI data with 3D convolutional neural networks. Front. Psych. 11, 440 (2020)

    Article  Google Scholar 

  44. Tournier, J.D., et al.: Mrtrix3: a fast, flexible and open software framework for medical image processing and visualisation. Neuroimage 202, 116137 (2019)

    Article  Google Scholar 

  45. Vieira, S., Pinaya, W.H., Mechelli, A.: Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: methods and applications. Neurosci. Biobehav. Rev. 74, 58–75 (2017)

    Article  Google Scholar 

  46. Wang, L.: Support Vector Machines: Theory and Applications, vol. 177. Springer Science & Business Media, Berlin (2005)

    Book  MATH  Google Scholar 

  47. Wen, D., Wei, Z., Zhou, Y., Li, G., Zhang, X., Han, W.: Deep learning methods to process fMRI data and their application in the diagnosis of cognitive impairment: a brief overview and our opinion. Front. Neuroinform. 12, 23 (2018)

    Article  Google Scholar 

  48. Wen, J., et al.: Convolutional neural networks for classification of Alzheimer’s disease: Overview and reproducible evaluation. Med. Image Anal. 63, 101694 (2020)

    Article  Google Scholar 

  49. Whitfield-Gabrieli, S., Nieto-Castanon, A.: CONN: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–41 (2012). https://doi.org/10.1089/brain.2012.0073

    Article  Google Scholar 

  50. Woolrich, M.W., et al.: Bayesian analysis of neuroimaging data in FSL. Neuroimage 45(1), S173–S186 (2009)

    Article  MathSciNet  Google Scholar 

  51. Yang, X., Zhang, N., Schrader, P.: A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity. Mach. Learn. Appl. 8, 100290 (2022)

    Google Scholar 

  52. Yin, W., Li, L., Wu, F.X.: Deep learning for brain disorder diagnosis based on fMRI images. Neurocomputing 469, 332–345 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially financed by the Faculty of Computer Science and Engineering at the Ss. Cyril and Methodius University in Skopje.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilinka Ivanoska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krajevski, J., Ivanoska, I., Trivodaliev, K., Kalajdziski, S., Gievska, S. (2022). An Exploration of Autism Spectrum Disorder Classification from Structural and Functional MRI Images. In: Zdravkova, K., Basnarkov, L. (eds) ICT Innovations 2022. Reshaping the Future Towards a New Normal. ICT Innovations 2022. Communications in Computer and Information Science, vol 1740. Springer, Cham. https://doi.org/10.1007/978-3-031-22792-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22792-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22791-2

  • Online ISBN: 978-3-031-22792-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics