Skip to main content

SMarT: A SMT Based Privacy Preserving Smart Meter Streaming Methodology

  • Conference paper
  • First Online:
Security, Privacy, and Applied Cryptography Engineering (SPACE 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13783))

  • 514 Accesses

Abstract

Smart metering is a mechanism through which fine-grained power consumption profiles of the consumers are collected periodically in a Smart grid. However, a growing concern in this regard is that the leakage of consumers’ consumption data may reveal their daily life patterns as the state-of-the-art metering strategies lack adequate security and privacy measures. Since Smart grid communication infrastructure supports low bandwidth, it prohibits the usage of computation-intensive cryptographic solutions. Among different privacy-preserving smart meter streaming methods, data manipulation techniques can easily be implemented in smart meters and do not require installing any storage devices or alternative energy sources. While these proposals are attractive to the privacy-aware smart meter design community, rigorous security evaluations of such schemes highlight their infeasibility by determining individual consumption patterns efficiently, thus compromising their privacy guarantees. Keeping in mind the inadequacies of these schemes, we propose a load signature modification technique, namely Obfuscate-Load-Signature that obscures the input power profile utilizing an information-theoretic metric to bound the inherent private information present in the metering stream. Along with providing the coveted privacy guarantees, the privacy preserved output time series profile generated due to our methodology also ensures excellent system utility by providing no aggregation and billing errors over constant tariff. In summary, we highlight how the aggregated metering information can be transformed to obscure individual consumption patterns without affecting the intended semantics of Smart grid operations. Finally, we present a rigorous experimental validation of our proposed methodology using a real-life dataset and suitable Hardware-In-the-Loop testbed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Please refer to [12] for more details on these conditions.

References

  1. Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid. https://csrc.nist.gov/csrc/media/publications/nistir/7628/rev-1/final/documents/draft_nistir_7628_r1_vol2.pdf

  2. Electric System Model (2021). https://in.mathworks.com/help/physmod/sps/ug/initializing-a-5-bus-network-with-the-load-flow-tool-of-powergui.html. Accessed 2021

  3. Home Appliances Power Consumption Table (2021). https://www.wholesalesolar.com/solar-information/power-table. Accessed 2021

  4. Naperville Smart Meters Keep Track of Household Activities (2021). https://smartgridawareness.org/2013/10/03/smart-meter-data-reveals/. Accessed 2021

  5. Time-of-Use (TOU) Pricing and Schedules (2021). https://www.powerstream.ca/. Accessed 2021

  6. Ács, G., Castelluccia, C.: I Have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_9

    Chapter  Google Scholar 

  7. Bohli, J.M., Sorge, C., Ugus, O.: A privacy model for smart metering. In: 2010 IEEE International Conference on Communications Workshops, pp. 1–5. IEEE (2010)

    Google Scholar 

  8. Dimitriou, T., Awad, M.K.: Secure and scalable aggregation in the smart grid resilient against malicious entities. Ad Hoc Netw. 50, 58–67 (2016). https://doi.org/10.1016/j.adhoc.2016.06.014

    Article  Google Scholar 

  9. Dong, R., Ratliff, L.J., Cárdenas, A.A., Ohlsson, H., Sastry, S.S.: Quantifying the utility-privacy tradeoff in the internet of things. ACM Trans. Cyber-Phys. Syst. 2(2) (2018). https://doi.org/10.1145/3185511

  10. Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power consumption with smart meters. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 561–577. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_33

    Chapter  Google Scholar 

  11. Finster, S., Baumgart, I.: Privacy-aware smart metering: A survey. IEEE Communications Surveys and Tutorials 17(2), 1088–1101 (2015). https://doi.org/10.1109/COMST.2015.2425958

  12. Ghosh, S., Chatterjee, U., Masburah, R., Dey, S., Mukhopadhyay, D.: Is the whole lesser than its parts? breaking an aggregation based privacy aware metering algorithm. In: 25th Euromicro Conference on Digital System Design, DSD 2022, Spain, 31 August–2 September 2022 (2022)

    Google Scholar 

  13. Goel, S., Hong, Y.: Security challenges in smart grid implementation. In: Smart Grid Security. SC, pp. 1–39. Springer, London (2015). https://doi.org/10.1007/978-1-4471-6663-4_1

    Chapter  Google Scholar 

  14. Gong, Y., Cai, Y., Guo, Y., Fang, Y.: A privacy-preserving scheme for incentive-based demand response in the smart grid. IEEE Trans. Smart Grid 7(3), 1304–1313 (2015)

    Article  Google Scholar 

  15. Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992). https://doi.org/10.1109/5.192069

    Article  Google Scholar 

  16. Hong, Y., Liu, W.M., Wang, L.: Privacy preserving smart meter streaming against information leakage of appliance status. IEEE Trans. Inf. Forens. Secur. 12(9), 2227–2241 (2017). https://doi.org/10.1109/TIFS.2017.2704904

  17. Hu, C., et al.: A secure and scalable data communication scheme in smart grids. Wirel. Commun. Mob. Comput. (2018). https://doi.org/10.1155/2018/5816765

  18. Kalogridis, G., Efthymiou, C., Denic, S.Z., Lewis, T.A., Cepeda, R.: Privacy for smart meters: Towards undetectable appliance load signatures. In: 2010 First IEEE International Conference on Smart Grid Communications, pp. 232–237. IEEE (2010)

    Google Scholar 

  19. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4_10

    Chapter  Google Scholar 

  20. Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homomorphic encryption. In: 2010 First IEEE International Conference on Smart Grid Communications, pp. 327–332. IEEE (2010)

    Google Scholar 

  21. Lu, R., Liang, X., Li, X., Lin, X., Shen, X.: Eppa: an efficient and privacy-preserving aggregation scheme for secure smart grid communications. IEEE Trans. Parallel Distrib. Syst. 23(9), 1621–1631 (2012)

    Article  Google Scholar 

  22. Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers. Wiley, New York (2010)

    MATH  Google Scholar 

  23. Müller, S.: Linux random number generator-a new approach (2020)

    Google Scholar 

  24. Mustafa, M.A., Cleemput, S., Aly, A., Abidin, A.: An mpc-based protocol for secure and privacy-preserving smart metering. In: 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2017, Torino, Italy, 26–29 September 2017, pp. 1–6. IEEE (2017). https://doi.org/10.1109/ISGTEurope.2017.8260202

  25. Mustafa, M.A., Cleemput, S., Aly, A., Abidin, A.: A secure and privacy-preserving protocol for smart metering operational data collection. IEEE Trans. Smart Grid 10(6), 6481–6490 (2019). https://doi.org/10.1109/TSG.2019.2906016

    Article  Google Scholar 

  26. Ozgur, U., Tonyali, S., Akkaya, K.: Testbed and simulation-based evaluation of privacy-preserving algorithms for smart grid ami networks. In: 2016 IEEE 41st Conference on Local Computer Networks Workshops (LCN Workshops), pp. 181–186. IEEE (2016)

    Google Scholar 

  27. Ozgur, U., Tonyali, S., Akkaya, K., Senel, F.: Comparative evaluation of smart grid ami networks: Performance under privacy. In: 2016 IEEE Symposium on Computers and Communication (ISCC), pp. 1134–1136. IEEE (2016)

    Google Scholar 

  28. Pagliari, D.J., Vinco, S., Macii, E., Poncino, M.: Low-overhead power trace obfuscation for smart meter privacy. In: Proceedings of the 56th Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV, USA, 02–06 June 2019, p. 111. ACM (2019). https://doi.org/10.1145/3316781.3317855

  29. Paverd, A., Martin, A., Brown, I.: Security and privacy in smart grid demand response systems. In: Cuellar, J. (ed.) SmartGridSec 2014. LNCS, vol. 8448, pp. 1–15. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10329-7_1

    Chapter  Google Scholar 

  30. Petrlic, R.: A privacy-preserving concept for smart grids, pp. B1–B14, January 2010

    Google Scholar 

  31. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data minimization: anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity management (2010)

    Google Scholar 

  32. Piga, D., Cominola, A., Giuliani, M., Castelletti, A., Rizzoli, A.E.: Sparse optimization for automated energy end use disaggregation. IEEE Trans. Contr. Syst. Technol. 24(3), 1044–1051 (2016). https://doi.org/10.1109/TCST.2015.2476777

  33. Rahman, M.S., Basu, A., Kiyomoto, S., Bhuiyan, M.A.: Privacy-friendly secure bidding for smart grid demand-response. Inf. Sci. 379, 229–240 (2017)

    Article  Google Scholar 

  34. Richardson, I., Thomson, M., Infield, D., Clifford, C.: Domestic electricity use: a high-resolution energy demand model, August 2019. https://hdl.handle.net/2134/6997

  35. Rottondi, C., Verticale, G., Capone, A.: Privacy-preserving smart metering with multiple data consumers. Comput. Netw. 57(7), 1699–1713 (2013)

    Article  Google Scholar 

  36. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/10.1145/359168.359176

    Article  MathSciNet  MATH  Google Scholar 

  37. Tan, R., Badrinath Krishna, V., Yau, D.K., Kalbarczyk, Z.: Impact of integrity attacks on real-time pricing in smart grids. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 439–450 (2013)

    Google Scholar 

  38. Tonyali, S., Akkaya, K., Saputro, N., Uluagac, A.S., Nojoumian, M.: Privacy-preserving protocols for secure and reliable data aggregation in IoT-enabled smart metering systems. Futur. Gener. Comput. Syst. 78, 547–557 (2018)

    Article  Google Scholar 

  39. Yang, W., Li, N., Qi, Y., Qardaji, W.H., McLaughlin, S.E., McDaniel, P.D.: Minimizing private data disclosures in the smart grid. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) the ACM Conference on Computer and Communications Security, CCS’12, Raleigh, NC, USA, 16–18 October 2012, pp. 415–427. ACM (2012). https://doi.org/10.1145/2382196.2382242

Download references

Acknowledgement

We would like to thank the projects titled Development of Secured Hardware And Automotive Systems from iHub-NTIHAC Foundation, IIT Kanpur, Exploring Formal Methods for Smart Grid Privacy and Security (SERB SUPRA), Cyber Security Research in CPS funded by TCG Foundation, India, for partially funding our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumyadyuti Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghosh, S., Dey, S., Mukhopadhyay, D. (2022). SMarT: A SMT Based Privacy Preserving Smart Meter Streaming Methodology. In: Batina, L., Picek, S., Mondal, M. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2022. Lecture Notes in Computer Science, vol 13783. Springer, Cham. https://doi.org/10.1007/978-3-031-22829-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22829-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22828-5

  • Online ISBN: 978-3-031-22829-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics