Skip to main content

Combining Montgomery Multiplication with Tag Tracing for the Pollard Rho Algorithm in Prime Order Fields

  • Conference paper
  • First Online:
Security, Privacy, and Applied Cryptography Engineering (SPACE 2022)

Abstract

In this short paper we show how to apply Montgomery multiplication to the tag tracing variant of the Pollard rho algorithm applied to prime order fields. This combines the advantages of tag tracing with those of Montgomery multiplication. In particular, compared to the previous version of tag tracing, the use of Montgomery multiplication entirely eliminates costly modular reductions and replaces these with much more efficient divisions by a suitable power of two.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bos, J.W., Montgomery, P.L.: Montgomery arithmetic from a software perspective. In: Bos, J.W., Lenstra, A.K. (eds.) Topics in Computational Number Theory Inspired by Peter L. Montgomery, pp. 10–39. Cambridge University Press (2017)

    Google Scholar 

  2. Cheon, J.H., Hong, J., Kim, M.: Accelerating Pollard’s rho algorithm on finite fields. J. Cryptol. 25(2), 195–242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Montgomery, P.L.: Modular multiplication without trial division. Math. Comput. 44(170), 519–521 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  4. van Oorschot, P., Wiener, M.: Parallel collision search with cryptanalytic applications. J. Cryptol. 12, 1–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Pollard, J.M.: A Monte Carlo method for index computation \((\text{ mod } \, p)\). Math. Comput. 32(143), 918–924 (1978)

    MATH  Google Scholar 

  6. Schnorr, C., Lenstra, H.W.: A Monte Carlo factoring algorithm with linear storage. Math. Comput. 43(167), 289–311 (1984)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Ruben Niederhagen and the reviewers for helpful comments and suggestions on how to improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhurima Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukhopadhyay, M., Sarkar, P. (2022). Combining Montgomery Multiplication with Tag Tracing for the Pollard Rho Algorithm in Prime Order Fields. In: Batina, L., Picek, S., Mondal, M. (eds) Security, Privacy, and Applied Cryptography Engineering. SPACE 2022. Lecture Notes in Computer Science, vol 13783. Springer, Cham. https://doi.org/10.1007/978-3-031-22829-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22829-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22828-5

  • Online ISBN: 978-3-031-22829-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics