Skip to main content

CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2022 (INDOCRYPT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13774))

Included in the following conference series:

  • 508 Accesses

Abstract

A critical aspect for the practical use of non-interactive zero-knowledge (NIZK) arguments in the common reference string (CRS) model is the demand for a trusted setup, i.e., a trusted generation of the CRS. Recently, motivated by its increased use in real-world applications, there has been a growing interest in concepts that allow to reduce the trust in this setup. In particular one demands that the zero-knowledge and ideally also the soundness property hold even when the CRS generation is subverted. One important line of work in this direction is the so-called updatable CRS for NIZK by Groth et al. (CRYPTO’18). The basic idea is that everyone can update a CRS and there is a way to check the correctness of an update. This guarantees that if at least one operation (the generation or one update) have been performed honestly, the zero-knowledge and the soundness properties hold. Later, Lipmaa (SCN’20) adopted this notion of updatable CRS to quasi-adaptive NIZK (QA-NIZK) arguments.

In this work, we continue the study of CRS-updatable QA-NIZK and analyse the most efficient asymmetric QA-NIZKs by González et al. (ASIACRYPT’15) in a setting where the CRS is fully subverted and propose an updatable version of it. In contrast to the updatable QA-NIZK by Lipmaa (SCN’20) which represents a symmetric QA-NIZK and requires a new non-standard knowledge assumption for the subversion zero-knowledge property, our technique to construct updatable asymmetric QA-NIZK is under a well-known standard knowledge assumption, i.e., the Bilinear Diffie-Hellman Knowledge of Exponents assumption. Furthermore, we show the knowledge soundness of the (updatable) asymmetric QA-NIZKs, an open problem posed by Lipmaa, which makes them compatible with modular zk-SNARK frameworks such as LegoSNARK by Campanelli et al. (ACM CCS’19).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The “powers of tau” ceremony of Zcash: https://z.cash/technology/paramgen/.

  2. 2.

    To avoid confusion we intentionally do not call them QA-NIZK for symmetric or asymmetric groups as done in [25], as both types are instantiated in asymmetric, i.e., type-3, bilinear groups.

  3. 3.

    We recall that in such applications \(\varrho \) represents public keys of the commitment scheme and can typically derived in a way (e.g., via a random oracle) such that subversion is not possible.

References

  1. Abdolmaleki, B., Baghery, K., Lipmaa, H., Siim, J., Zajac, M.: UC-secure CRS generation for SNARKs. In: Buchmann, J., Nitaj, A., Eddine Rachidi, T. (eds.) AFRICACRYPT 19. LNCS, vol. 11627, pp. 99–117. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-23696-0_6

  2. Abdolmaleki, B., Baghery, K., Lipmaa, H., Zajac, M.: A subversion-resistant SNARK. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part III. LNCS, vol. 10626, pp. 3–33. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70700-6_1

  3. Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On QA-NIZK in the BPK model. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 590–620. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45374-9_20

  4. Abdolmaleki, B., Lipmaa, H., Siim, J., Zajac, M.: On subversion-resistant snarks. J. Cryptol. 34(3), 17 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abdolmaleki, B., Ramacher, S., Slamanig, D.: Lift-and-shift: obtaining simulation extractable subversion and updatable SNARKs generically. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020, pp. 1987–2005. ACM Press (2020). https://doi.org/10.1145/3372297.3417228

  6. Abdolmaleki, B., Slamanig, D.: Subversion-resistant quasi-adaptive NIZK and applications to modular zk-SNARKs. In: Conti, M., Stevens, M., Krenn, S. (eds.) CANS 2021. LNCS, vol. 13099, pp. 492–512. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92548-2_26

    Chapter  MATH  Google Scholar 

  7. Abe, M., Jutla, C.S., Ohkubo, M., Pan, J., Roy, A., Wang, Y.: Shorter QA-NIZK and SPS with tighter security. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019, Part III. LNCS, vol. 11923, pp. 669–699. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-34618-8_23

  8. Abe, M., Jutla, C.S., Ohkubo, M., Roy, A.: Improved (almost) tightly-secure simulation-sound QA-NIZK with applications. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part I. LNCS, vol. 11272, pp. 627–656. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-030-03326-2_21

  9. Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS: security in the face of parameter subversion. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 777–804. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_26

  10. Ben-Sasson, E., Chiesa, A., Green, M., Tromer, E., Virza, M.: Secure sampling of public parameters for succinct zero knowledge proofs. In: 2015 IEEE Symposium on Security and Privacy, pp. 287–304. IEEE (2015)

    Google Scholar 

  11. Bowe, S., Gabizon, A., Green, M.D.: A multi-party protocol for constructing the public parameters of the pinocchio zk-snark. Cryptology ePrint Archive, Report 2017/602 (2017). https://eprint.iacr.org/2017/602

  12. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: a toolbox for more efficient universal and updatable zkSNARKs and commit-and-prove extensions. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 3–33. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92078-4_1

  13. Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: Modular design and composition of succinct zero-knowledge proofs. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2075–2092. ACM Press (2019). https://doi.org/10.1145/3319535.3339820

  14. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.P.: Marlin: preprocessing zkSNARKs with universal and updatable SRS. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 738–768. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45721-1_26

  15. Damgård, I.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO’91. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_36

  16. Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014, Part I. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_28

  17. Daza, V., González, A., Pindado, Z., Ràfols, C., Silva, J.: Shorter quadratic QA-NIZK proofs. In: Lin, D., Sako, K. (eds.) PKC 2019, Part I. LNCS, vol. 11442, pp. 314–343. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-17253-4_11

  18. Daza, V., Ràfols, C., Zacharakis, A.: Updateable inner product argument with logarithmic verifier and applications. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 527–557. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-45374-9_18

  19. Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_8

  20. Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 315–347. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-76578-5_11

  21. Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 33–62. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96881-0_2

  22. Gabizon, A., Williamson, Z.J., Ciobotaru, O.: PLONK: Permutations over Lagrange-bases for oecumenical noninteractive arguments of knowledge. Cryptology ePrint Archive, Report 2019/953 (2019). https://eprint.iacr.org/2019/953

  23. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_37

  24. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. González, A., Hevia, A., Ràfols, C.: QA-NIZK arguments in asymmetric groups: new tools and new constructions. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 605–629. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_25

  26. Groth, J.: Simulation-sound NIZK proofs for a practical language and constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.org/10.1007/11935230_29

  27. Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_19

  28. Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_11

  29. Groth, J., Kohlweiss, M., Maller, M., Meiklejohn, S., Miers, I.: Updatable and universal common reference strings with applications to zk-SNARKs. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part III. LNCS, vol. 10993, pp. 698–728. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-96878-0_24

  30. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_21

  31. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_24

  32. Jutla, C.S., Roy, A.: Shorter quasi-adaptive NIZK proofs for linear subspaces. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 1–20. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_1

  33. Jutla, C.S., Roy, A.: Switching lemma for bilinear tests and constant-size NIZK proofs for linear subspaces. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 295–312. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_17

  34. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press (1992). https://doi.org/10.1145/129712.129782

  35. Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 101–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_4

  36. Kohlweiss, M., Maller, M., Siim, J., Volkhov, M.: Snarky ceremonies. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part III. LNCS, vol. 13092, pp. 98–127. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92078-4_4

  37. Libert, B., Peters, T., Joye, M., Yung, M.: Non-malleability from malleability: Simulation-sound quasi-adaptive NIZK proofs and CCA2-secure encryption from homomorphic signatures. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 514–532. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_29

  38. Libert, B., Peters, T., Joye, M., Yung, M.: Compactly hiding linear spans - tightly secure constant-size simulation-sound QA-NIZK proofs and applications. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. LNCS, vol. 9452, pp. 681–707. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-6_28

  39. Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10

  40. Lipmaa, H.: Key-and-argument-updatable QA-NIZKs. In: Galdi, C., Kolesnikov, V. (eds.) SCN 20. LNCS, vol. 12238, pp. 645–669. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-57990-6_32

  41. Lipmaa, H.: A unified framework for non-universal snarks. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022–25th IACR International Conference on Practice and Theory of Public-Key Cryptography, Virtual Event, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13177, pp. 553–583. Springer (2022)

    Google Scholar 

  42. Lipmaa, H., Siim, J., Zajac, M.: Counting vampires: from univariate sumcheck to updatable ZK-SNARK. Cryptology ePrint Archive, Report 2022/406 (2022). https://eprint.iacr.org/2022/406

  43. Maller, M., Bowe, S., Kohlweiss, M., Meiklejohn, S.: Sonic: Zero-knowledge SNARKs from linear-size universal and updatable structured reference strings. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 2111–2128. ACM Press (2019). https://doi.org/10.1145/3319535.3339817

  44. Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part I. LNCS, vol. 10031, pp. 729–758. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_27

  45. Ràfols, C., Silva, J.: QA-NIZK arguments of same opening for bilateral commitments. In: Nitaj, A., Youssef, A.M. (eds.) AFRICACRYPT 20. LNCS, vol. 12174, pp. 3–23. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-51938-4_1

  46. Ràfols, C., Zapico, A.: An algebraic framework for universal and updatable SNARKs. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part I. LNCS, vol. 12825, pp. 774–804. Springer, Heidelberg, Virtual Event (2021). https://doi.org/10.1007/978-3-030-84242-0_27

Download references

Acknowledgements

This work was in part funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 871473 (Kraken) and no890456 (SlotMachine), and by the Austrian Science Fund (FWF) and netidee SCIENCE under grant agreement P31621-N38 (Profet). This work has received funding by the German Federal Ministry of Education and Research BMBF (grant 16KISK038, project 6GEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Abdolmaleki .

Editor information

Editors and Affiliations

A CRS-update Hiding Proof

A CRS-update Hiding Proof

Lemma 2

([40], Lemma 6.). Assume that \(\boldsymbol{K}, \boldsymbol{K}_\textsf{int}\in \mathcal {D}_{\boldsymbol{K}}\) and \(\boldsymbol{A}, \boldsymbol{A}_\textsf{int}\in \mathcal {D}_{\boldsymbol{A}}\), where \(\mathcal {D}_{\boldsymbol{K}}\) and \(\mathcal {D}_{\boldsymbol{A}}\) satisfy the following conditions for random variables \(Y_1\) and \(Y_2\): (i) if then \(Y_1 + Y_2 \in \mathcal {D}_{\boldsymbol{K}}\), and (ii) if then \(Y_1 \cdot Y_2 \in \mathcal {D}_{\boldsymbol{A}}\). Then, \(\varPi _{\mathsf {asy\text {-}up}}'\) is key-update hiding.

Proof

Since \(\textsf{Vcrs}(\textsf{crs}, \mathsf lpar) = 1\), thus, \(\textsf{crs}\) is honestly created, \(\boldsymbol{C} = \boldsymbol{K} \boldsymbol{A}\). So, \(\boldsymbol{C}_\textsf{up}= \boldsymbol{C} \boldsymbol{A}_\textsf{int}+ \boldsymbol{K}_\textsf{int}\boldsymbol{A} \boldsymbol{A}_\textsf{int}= ( \boldsymbol{K} + \boldsymbol{K}_\textsf{int}) \boldsymbol{A} \boldsymbol{A}_\textsf{int}= ( \boldsymbol{K} + \boldsymbol{K}_\textsf{int}) \boldsymbol{A}_\textsf{up}\) = \(\boldsymbol{K}_\textsf{up}\boldsymbol{A}_\textsf{up}\). Similarly holds for \(\boldsymbol{P}\) . Due to the assumption on \(\mathcal {D}_{\boldsymbol{A}}\) and \(\mathcal {D}_{\boldsymbol{K}}\) , \(\textsf{crs}\) and \(\textsf{crs}_\textsf{up}\) come from the same distribution.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdolmaleki, B., Slamanig, D. (2022). CRS-Updatable Asymmetric Quasi-Adaptive NIZK Arguments. In: Isobe, T., Sarkar, S. (eds) Progress in Cryptology – INDOCRYPT 2022. INDOCRYPT 2022. Lecture Notes in Computer Science, vol 13774. Springer, Cham. https://doi.org/10.1007/978-3-031-22912-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22912-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22911-4

  • Online ISBN: 978-3-031-22912-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics