Abstract
In this paper, we present a perfectly-secure multi-party computation (MPC) protocol in the asynchronous communication setting with optimal resilience. Our protocol is secure against a computationally-unbounded malicious adversary characterized by an adversary structure \(\mathcal {Z}\), which enumerates all possible subsets of potentially corrupt parties. The protocol incurs an amortized communication of \(\mathcal {O}(|\mathcal {Z}|^2)\) bits per multiplication. This improves upon the previous best protocol of Choudhury and Pappu (INDOCRYPT 2020), which requires an amortized communication of \(\mathcal {O}(|\mathcal {Z}|^3)\) bits per multiplication. Previously, perfectly-secure MPC with amortized communication of \(\mathcal {O}(|\mathcal {Z}|^2)\) bits per multiplication was known only in the relatively simpler synchronous communication setting (Hirt and Tschudi, ASIACRYPT 2013).
A. Appan and A. Chandramouli—Work done when the author was a student at International Institute of Information Technology, Bangalore
The full version of the article is available at [1]
A. Choudhury—This research is an outcome of the R &D work undertaken in the project under the Visvesvaraya PhD Scheme of Ministry of Electronics & Information Technology, Government of India, being implemented by Digital India Corporation (formerly Media Lab Asia). The author is also thankful to the Electronics, IT & BT Government of Karnataka for supporting this work under the CIET project.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(\mathcal {Z}\) satisfies the \(\mathbb {Q}^{(k)}(\mathcal {P}, \mathcal {Z})\) condition [18], if the union of no k sets from \(\mathcal {Z}\) covers \(\mathcal {P}\).
- 2.
A secret-sharing scheme is called linear, if the shares are computed as a linear function of the secret and the underlying randomness used in the scheme.
- 3.
From [14], every deterministic ABA protocol must have non-terminating runs, where the parties may run the protocol forever, without obtaining any output. To circumvent this result, randomized ABA protocols are considered and the best we can hope for from such protocols is that the parties eventually obtain an output, asymptotically with probability 1 (this property is called almost-surely termination property).
- 4.
The reason for two different discarded sets is that the various instances of cheater-identification are executed asynchronously, thus resulting in a corrupt party to be identified by different honest parties during different iterations.
- 5.
Here, the summand-list of a selected party refers to the summands it was supposed to share during the respective \(\varPi _{\textsf{OptMult}}\) instance of that iteration.
References
Appan, A., Chandramouli, A., Choudhury, A.: Revisiting the efficiency of asynchronous multi party computation against general adversaries. IACR Cryptology ePrint Archive, p. 651 (2022)
Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34
Beerliová-Trubíniová, Z., Hirt, M.: Simple and efficient perfectly-secure asynchronous MPC. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 376–392. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_23
Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC, pp. 52–61. ACM (1993). https://doi.org/10.1145/167088.167109
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10. ACM (1988). https://doi.org/10.1145/62212.62213
Ben-Or, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience (extended abstract). In: PODC, pp. 183–192. ACM (1994). https://doi.org/10.1145/197917.198088
Canetti, R.: Studies in secure multiparty computation and applications. Ph.D. thesis, Weizmann Institute, Israel (1995)
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888
Canetti, R.: Universally composable security. J. ACM 67(5), 28:1–28:94 (2020). https://doi.org/10.1145/3402457
Choudhury, A., Pappu, N.: Perfectly-secure asynchronous MPC for general adversaries (extended abstract). In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) INDOCRYPT 2020. LNCS, vol. 12578, pp. 786–809. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_35
Choudhury, A., Patra, A.: An efficient framework for unconditionally secure multiparty computation. IEEE Trans. Inf. Theory 63(1), 428–468 (2017). https://doi.org/10.1109/TIT.2016.2614685
Cohen, R.: Asynchronous secure multiparty computation in constant time. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 183–207. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8_8
Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_33
Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of Distributed Consensus with One Faulty Process. J. ACM 32(2), 374–382 (1985). https://doi.org/10.1145/3149.214121
Fitzi, M., Maurer, U.: Efficient Byzantine agreement secure against general adversaries. In: Kutten, S. (ed.) DISC 1998. LNCS, vol. 1499, pp. 134–148. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056479
Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications. Cambridge University Press, Cambridge (2004). https://doi.org/10.5555/1804390
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: STOC, pp. 218–229. ACM (1987). https://doi.org/10.1145/28395.28420
Hirt, M., Maurer, U.: Player simulation and general adversary structures in perfect multiparty computation. J. Cryptol. 13(1), 31–60 (2000). https://doi.org/10.1007/s001459910003
Hirt, M., Tschudi, D.: Efficient general-adversary multi-party computation. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 181–200. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_10
Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structures). In: Global Telecommunication Conference, Globecom, pp. 99–102. IEEE Computer Society (1987). https://doi.org/10.1002/ecjc.4430720906
Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27
Kumar, M.V.N.A., Srinathan, K., Rangan, C.P.: Asynchronous perfectly secure computation tolerating generalized adversaries. In: Batten, L., Seberry, J. (eds.) ACISP 2002. LNCS, vol. 2384, pp. 497–511. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45450-0_37
Kursawe, K., Freiling, F.C.: Byzantine fault tolerance on general hybrid adversary structures. Technical report, RWTH Aachen (2005)
Maurer, U.: Secure multi-party computation made simple. In: Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 14–28. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7_2
Patra, A., Choudhury, A., Pandu Rangan, C.: Efficient asynchronous verifiable secret sharing and multiparty computation. J. Cryptol. 28(1), 49–109 (2013). https://doi.org/10.1007/s00145-013-9172-7
Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC, pp. 73–85. ACM (1989). https://doi.org/10.1145/73007.73014
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/10.1145/359168.359176
Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS, pp. 160–164. IEEE Computer Society (1982). https://doi.org/10.1109/SFCS.1982.38
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Appan, A., Chandramouli, A., Choudhury, A. (2022). Revisiting the Efficiency of Perfectly Secure Asynchronous Multi-party Computation Against General Adversaries. In: Isobe, T., Sarkar, S. (eds) Progress in Cryptology – INDOCRYPT 2022. INDOCRYPT 2022. Lecture Notes in Computer Science, vol 13774. Springer, Cham. https://doi.org/10.1007/978-3-031-22912-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-22912-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22911-4
Online ISBN: 978-3-031-22912-1
eBook Packages: Computer ScienceComputer Science (R0)