Abstract
TinyJAMBU is one of the finalists in the NIST lightweight standardization competition. This paper presents full round practical zero-sum distinguishers on the keyed permutation used in TinyJAMBU.
We propose a full round zero-sum distinguisher on the 128- and 192-bit key variants and a reduced round zero-sum distinguisher for the 256-bit key variant in the known-key settings. Our best known-key distinguisher works with \(2^{16}\) data/time complexity on the full 128-bit version and with \(2^{23}\) data/time complexity on the full 192-bit version. For the 256-bit version, we can distinguish 1152 rounds (out of 1280 rounds) in the known-key settings. In addition, we present the best zero-sum distinguishers in the secret-key settings: with complexity \(2^{23}\) we can distinguish 544 rounds in the forward direction or 576 rounds in the backward direction.
For finding the zero-sum distinguisher, we bound the algebraic degree of the TinyJAMBU permutation using the monomial prediction technique proposed by Hu et al. at ASIACRYPT 2020. We model the monomial prediction rule on TinyJAMBU in MILP and find upper bounds on the degree by computing the parity of the number of solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Aumasson, J., Dinur, I., Meier, W., Shamir, A.: Cube testers and key recovery attacks on reduced-round MD6 and Trivium. In: Symmetric Cryptography. Dagstuhl Seminar Proceedings, vol. 09031. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany (2009)
Aumasson, J.P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi. rump session of Cryptographic Hardware and Embedded Systems-CHES 2009, 67 (2009)
Boura, C., Canteaut, A.: Zero-sum distinguishers for iterated permutations and application to Keccak-f and Hamsi-256. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 1–17. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_1
Boura, C., Canteaut, A.: A zero-sum property for the Keccak-f permutation with 18 rounds. In: ISIT, pp. 2488–2492. IEEE (2010)
Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_15
Canteaut, A., Videau, M.: Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 518–533. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_34
Chen, S., Xiang, Z., Zeng, X., Zhang, S.: On the relationships between different methods for degree evaluation. IACR Trans. Symmetric Cryptol. 2021(1), 411–442 (2021)
Daemen, J., Rijmen, V.: AES and the wide trail design strategy. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 108–109. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_7
Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_16
Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Cryptanalysis of Ascon. In: Topics in Cryptology - CT-RSA, pp. 371–387 (2015)
Dunkelman, O., Lambooij, E., Ghosh, S.: Practical related-key forgery attacks on the full tinyjambu-192/256. Cryptology ePrint Archive, Paper 2022/1122 (2022). https://eprint.iacr.org/2022/1122
Dutta, P., Rajas, M., Sarkar, S.: Weak-keys and key-recovery attack for TinyJAMBU, May 2022. https://doi.org/10.21203/rs.3.rs-1646044/v1
Eichlseder, M., Grassi, L., Lüftenegger, R., Øygarden, M., Rechberger, C., Schofnegger, M., Wang, Q.: An algebraic attack on ciphers with low-degree round functions: application to full MiMC. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 477–506. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_16
Hadipour, H., Eichlseder, M.: Integral cryptanalysis of WARP based on monomial prediction. IACR Trans. Symmetric Cryptol. 2022(2), 92–112 (2022)
Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset division property without unknown subset. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 466–495. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_17
Hebborn, P., Lambin, B., Leander, G., Todo, Y.: Lower bounds on the degree of block ciphers. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 537–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_18
Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division property: revisiting degree evaluations, cube attacks, and key-independent sums. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12491, pp. 446–476. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_15
Knudsen, L., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9_9
Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60590-8_16
Knudsen, L.R., Rijmen, V.: Known-key distinguishers for some block ciphers. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 315–324. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76900-2_19
Lai, X.: Higher order derivatives and differential cryptanalysis. In: Communications and Cryptography: Two Sides of One Tapestry, pp. 227–233. Springer (1994)
Liu, M.: Degree evaluation of NFSR-based cryptosystems. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 227–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_8
Saha, D., Sasaki, Y., Shi, D., Sibleyras, F., Sun, S., Zhang, Y.: On the security margin of TinyJAMBU with refined differential and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2020(3), 152–174 (2020)
Sibleyras, F., Sasaki, Y., Todo, Y., Hosoyamada, A., Yasuda, K.: Birthday-bound slide attacks on TinyJAMBU’s keyed permutation for all key sizes. In: Fifth Lightweight Cryptography Workshop (2022)
Technology, N.: Report on Lightweight Cryptography: NiSTIR 8114. CreateSpace Independent Publishing Platform (2017)
Teng, W.L., Salam, M.I., Yau, W., Pieprzyk, J., Phan, R.C.: Cube attacks on round-reduced TinyJAMBU. IACR Cryptol. ePrint Arch, p. 1164 (2021)
Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12
Todo, Y.: Integral cryptanalysis on full MISTY1. J. Cryptol. 30(3), 920–959 (2017)
Todo, Y., Morii, M.: Bit-based division property and application to Simon family. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 357–377. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_18
Wang, Q., Grassi, L., Rechberger, C.: Zero-sum partitions of PHOTON permutations. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 279–299. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_15
Wu, H., Huang, T.: The JAMBU lightweight authentication encryption mode (v2.1). Submission to CAESAR (2016). https://competitions.cr.yp.to/round3/jambuv21.pdf
Wu, H., Huang, T.: TinyJAMBU: a family of lightweight authenticated encryption algorithms: submission to NIST LwC (2019). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
Wu, H., Huang, T.: TinyJAMBU: a family of lightweight authenticated encryption algorithms (version 2) (2021). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A The Algebraic Degree of TinyJAMBU-128 Permutation and Its Inverse
A The Algebraic Degree of TinyJAMBU-128 Permutation and Its Inverse
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dunkelman, O., Ghosh, S., Lambooij, E. (2022). Full Round Zero-Sum Distinguishers on TinyJAMBU-128 and TinyJAMBU-192 Keyed-Permutation in the Known-Key Setting. In: Isobe, T., Sarkar, S. (eds) Progress in Cryptology – INDOCRYPT 2022. INDOCRYPT 2022. Lecture Notes in Computer Science, vol 13774. Springer, Cham. https://doi.org/10.1007/978-3-031-22912-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-22912-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22911-4
Online ISBN: 978-3-031-22912-1
eBook Packages: Computer ScienceComputer Science (R0)