Skip to main content

Entropic Hardness of Module-LWE from Module-NTRU

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2022 (INDOCRYPT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13774))

Included in the following conference series:

  • 579 Accesses

Abstract

The Module Learning With Errors problem () has gained popularity in recent years for its security-efficiency balance,and its hardness has been established for a number of variants. In this paper, we focus on proving the hardness of (search)  for general secret distributions, provided they carry sufficient min-entropy. This is called entropic hardness of . First, we adapt the line of proof of Brakerski and Döttling on  (TCC’20) to prove that the existence of certain distributions implies the entropic hardness of . Then, we provide one such distribution whose required properties rely on the hardness of the decisional Module-\(\textrm{NTRU}\) problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    As we use both the \(R_q\)-inverse and the K-inverse, we insist on differentiating them as \(\textbf{F}_q^{-1}\) and \(\textbf{F}^{-1}\) respectively.

  2. 2.

    The (non-average) conditional min-entropy of \(\textbf{x}\) given \(\textbf{z}\) is denoted by \(H_\infty (\textbf{x}| \textbf{z})\) instead of \(\widetilde{H}_\infty (\textbf{x}| \textbf{z})\), and given by \(H_\infty (\textbf{x}| \textbf{z}) = -\log _2 \Big ( \max _{\textbf{z}' \in Z}\max _{\textbf{x}' \in X} \mathbb {P}[\textbf{x}= \textbf{x}' | \textbf{z}= \textbf{z}'] \Big )\).

  3. 3.

    Note that at the time of writing, the paper by Lin et al. is only accessible on ePrint and has not yet been peer-reviewed.

References

  1. Albrecht, M.R., Deo, A., Paterson, K.G.: Cold boot attacks on ring and module LWE keys under the NTT. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 173–213 (2018)

    Article  Google Scholar 

  2. Bernstein, D. J., et al.: NTRU prime round-3 candidate to the NIST post-quantum cryptography standardisation project (2020)

    Google Scholar 

  3. Bos, J. W., et al.: CRYSTALS - kyber: a CCA-secure module-lattice-based KEM. In: Euro S and P, pp. 353–367. IEEE (2018)

    Google Scholar 

  4. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Towards classical hardness of module-LWE: the linear rank case. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12492, pp. 289–317. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_10

    Chapter  Google Scholar 

  5. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: On the hardness of module-LWE with binary secret. In: Paterson, K.G. (ed.) CT-RSA 2021. LNCS, vol. 12704, pp. 503–526. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75539-3_21

    Chapter  Google Scholar 

  6. Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W.: Entropic hardness of module-LWE from module-NTRU. IACR Cryptol. ePrint Arch, p. 245 (2022)

    Google Scholar 

  7. Brakerski, Z., Döttling, N.: Hardness of LWE on general entropic distributions. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 551–575. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_19

    Chapter  Google Scholar 

  8. Brakerski, Z., Döttling, N.: Lossiness and entropic hardness for ring-LWE. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12550, pp. 1–27. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_1

    Chapter  MATH  Google Scholar 

  9. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping. In: ITCS, pp. 309–325. ACM (2012)

    Google Scholar 

  10. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC, pp. 575–584. ACM (2013)

    Google Scholar 

  11. Chen, C., et al.: NTRU round-3 candidate to the NIST post-quantum cryptography standardisation project (2020)

    Google Scholar 

  12. Chuengsatiansup, C., Prest, T., Stehlé, D., Wallet, A., Xagawa, K.: Modfalcon: compact signatures based on module-NTRU lattices. In: AsiaCCS, pp. 853–866. ACM (2020)

    Google Scholar 

  13. Ducas, L., et al.: Crystals-dilithium: a lattice-based digital signature scheme. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 238–268 (2018)

    Google Scholar 

  14. Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_19

    Chapter  MATH  Google Scholar 

  15. Ducas, L., van Woerden, W.: NTRU fatigue: how stretched is overstretched? In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13093, pp. 3–32. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92068-5_1

    Chapter  Google Scholar 

  16. Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ICS, pp. 230–240. Tsinghua University Press (2010)

    Google Scholar 

  17. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054868

    Chapter  Google Scholar 

  18. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75(3), 565–599 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lin, H., Wang, Y., Wang, M.: Hardness of module-LWE and ring-LWE on general entropic distributions. IACR Cryptol. ePrint Arch, p. 1238 (2020)

    Google Scholar 

  20. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  21. Micciancio, D.: On the hardness of learning with errors with binary secrets. Theory Comput. 14(1), 1–17 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41

    Chapter  Google Scholar 

  23. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peikert, C.: Limits on the hardness of lattice problems in phl\({}_{\text{ php }}\) norms. Comput. Complex. 17(2), 300–351 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Peikert, C.: A decade of lattice cryptography. Found. Trends Theor. Comput. Sci. 10(4), 283–424 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pellet-Mary, A., Stehlé, D.: On the hardness of the NTRU problem. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. LNCS, vol. 13090, pp. 3–35. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92062-3_1

    Chapter  Google Scholar 

  27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93. ACM (2005)

    Google Scholar 

  28. Rudelson, M., Vershynin, R.: The littlewood-offord problem and invertibility of random matrices. Adv. Math. 218, 600–633 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_36

    Chapter  Google Scholar 

  30. von Neumann, J., Goldstine, H.H.: Numerical inverting of matrices of high order. Bull. Amer. Math. Soc. 53, 1021–1099 (1947)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Union PROMETHEUS project (Horizon 2020 Research and Innovation Program, grant 780701), by the PEPR quantique France 2030 programme (ANR-22-PETQ-0008), and further supported by the Danish Independent Research Council under project number 0165-00107B (C3PO). We thank Alexandre Wallet and Damien Stehlé for helpful discussions. We also thank our anonymous referees of Eurocrypt 2022 and Indocrypt 2022 for their thorough proof reading and constructive feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin Jeudy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boudgoust, K., Jeudy, C., Roux-Langlois, A., Wen, W. (2022). Entropic Hardness of Module-LWE from Module-NTRU. In: Isobe, T., Sarkar, S. (eds) Progress in Cryptology – INDOCRYPT 2022. INDOCRYPT 2022. Lecture Notes in Computer Science, vol 13774. Springer, Cham. https://doi.org/10.1007/978-3-031-22912-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-22912-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-22911-4

  • Online ISBN: 978-3-031-22912-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics