Abstract
This paper analyses the lightweight, sponge-based NAEAD mode \(\textsf {ISAP} \), one of the finalists of the NIST Lightweight Cryptography (LWC) standardisation project, that achieves high-throughput with inherent protection against differential power analysis (DPA). We observe that \(\textsf {ISAP} \) requires 256-bit capacity in the authentication module to satisfy the NIST LWC security criteria. In this paper, we study the analysis carefully and observe that this is primarily due to the collision in the associated data part of the hash function which can be used in the forgery of the mode. However, the same is not applicable to the ciphertext part of the hash function because a collision in the ciphertext part does not always lead to a forgery. In this context, we define a new security notion, named \({\textsf {2PI{+}}}\) security, which is a strictly stronger notion than the collision security, and show that the security of a class of encrypt-then-hash based MAC type of authenticated encryptions, that includes \(\textsf {ISAP} \), reduces to the \({\textsf {2PI{+}}}\) security of the underlying hash function used in the authentication module. Next we investigate and observe that a feed-forward variant of the generic sponge hash achieves better \({\textsf {2PI{+}}}\) security as compared to the generic sponge hash. We use this fact to present a close variant of \(\textsf {ISAP} \), named \({\textsf {ISAP}{+}}\), which is structurally similar to \(\textsf {ISAP} \), except that it uses the feed-forward variant of the generic sponge hash in the authentication module. This improves the overall security of the mode, and hence we can set the capacity of the ciphertext part to 192 bits (to achieve a higher throughput) and yet satisfy the NIST LWC security criteria.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
National Institute of Standards and Technology: FIPS PUB 202: SHA-3Standard: Permutation-based hash and extendable-output functions. Federal Information Processing Standards Publication 202, U.S. Department of Commerce, August 2015
Andreeva, E., et al.: PRIMATEs v1.02. Submission to CAESAR (2016). https://competitions.cr.yp.to/round2/primatesv102.pdf
Andreeva, E., Daemen, J., Mennink, B., Van Assche, G.: Security of keyed sponge constructions using a modular proof approach. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 364–384. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5_18
Belaïd, S., et al.: Towards fresh re-keying with leakage-resilient PRFs: cipher design principles and analysis. J. Cryptogr. Eng. 4(3), 157–171 (2014)
Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_41
Bernstein, D.J.: ChaCha, a variant of Salsa20 (2008)
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions, 2007. In: Ecrypt Hash Workshop (2007)
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_11
Bertoni, G., Daemen, M.P.J., Van Assche, G., Van Keer, R.: Ketje v2. Submission to CAESAR (2016). https://competitions.cr.yp.to/round3/ketjev2.pdf
Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259
Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_4
Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26
Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2. Submission to NIST Lightweight Cryptography, 2019 (2019). https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
Dobraunig, C., et al.: ISAP v2.0. Submission to NIST (2019). https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/ISAP-spec.pdf
CAESAR Committee: CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. http://competitions.cr.yp.to/caesar.html/
Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography, Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4
Dobraunig, C., et al.: ISAP v2.0. https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/isap-spec-final.pdf
Dobraunig, C., et al.: ISAP v2.0. IACR Trans. Symmetric Cryptol. 2020(S1), 390–416 (2020)
Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F., Unterluggauer, T.: ISAP - towards side-channel secure authenticated encryption. IACR Trans. Symmetric Cryptol. 2017(1), 80–105 (2017)
Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M., Ascon v1.2. Submission to CAESAR (2016). https://competitions.cr.yp.to/round3/asconv12.pdf
Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that are easier to mask: how far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_22
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)
Goubin, L., Patarin, J.: DES and differential power analysis the “duplication’’ method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5_15
Grosso, V., et al.: SCREAM side-channel resistant authenticated encryption with masking. Submission to CAESAR (2015). https://competitions.cr.yp.to/round2/screamv3.pdf
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference (version 3.0) (2011). https://keccak.team/files/Keccak-reference-3.0.pdf
Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: The NOEKEON block cipher, 2000. Nessie Proposal (2020). https://competitions.cr.yp.to/round3/acornv3.pdf
Kocher, P.C.: Timing Attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9
Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25
Medwed, M., Petit, C., Regazzoni, F., Renauld, M., Standaert, F.-X.: Fresh re-keying II: securing multiple parties against side-channel and fault attacks. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 115–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27257-8_8
Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh re-keying: security against side-channel and fault attacks for low-cost devices. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9_17
NIST: Lightweight cryptography. https://csrc.nist.gov/Projects/Lightweight-Cryptography
Patarin, J.: The “coefficients H’’ technique. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 328–345. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_21
Piret, G., Roche, T., Carlet, C.: PICARO – a block cipher allowing efficient higher-order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_19
Acknowledgement
The authors would like to thank all the anonymous reviewers for their valuable comments and suggestions. Cuauhtemoc Mancillas López is partially supported by the Cryptography Research Center of the Technology Innovation Institute (TII), Abu Dhabi (UAE), under the TII- Cuauhtemoc project.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bhattacharjee, A., Chakraborti, A., Datta, N., Mancillas-López, C., Nandi, M. (2022). \({\textsf {ISAP}{+}}\): \(\textsf {ISAP} \) with Fast Authentication. In: Isobe, T., Sarkar, S. (eds) Progress in Cryptology – INDOCRYPT 2022. INDOCRYPT 2022. Lecture Notes in Computer Science, vol 13774. Springer, Cham. https://doi.org/10.1007/978-3-031-22912-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-22912-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-22911-4
Online ISBN: 978-3-031-22912-1
eBook Packages: Computer ScienceComputer Science (R0)